Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 9 additions & 0 deletions paddle/fluid/operators/optimizers/adadelta_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -39,12 +39,17 @@ class AdadeltaOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("AvgSquaredGrad", "(Tensor) Input average of squared gradient");
AddInput("AvgSquaredUpdate",
"(Tensor) Input average of squared parameter updates");
AddInput("MasterParam", "FP32 master weight for AMP.").AsDispensable();

AddOutput("ParamOut", "(Tensor) Output parameter");
AddOutput("AvgSquaredGradOut",
"(Tensor) Output average of squared gradient");
AddOutput("AvgSquaredUpdateOut",
"(Tensor) Output average of squared parameter updates");
AddOutput("MasterParamOut",
"The updated FP32 master weight for AMP. "
"It shared memory with Input(MasterParam).")
.AsDispensable();

AddAttr<float>("rho",
"(float, default 0.95) Exponential decay rate "
Expand All @@ -54,6 +59,10 @@ class AdadeltaOpMaker : public framework::OpProtoAndCheckerMaker {
"(float, default 1.0e-6) Constant for "
"numerical stability")
.SetDefault(1.0e-6f);
AddAttr<bool>("multi_precision",
"(bool, default false) "
"Whether to use multi-precision during weight updating.")
.SetDefault(false);
AddComment(R"DOC(
Adadelta Optimizer.

Expand Down
13 changes: 12 additions & 1 deletion paddle/fluid/pybind/eager_generator.h
Original file line number Diff line number Diff line change
Expand Up @@ -206,6 +206,8 @@ std::map<std::string, std::set<std::string>> op_ins_map = {
{"Q", "K", "V", "Offset", "Columns", "KeyPaddingMask", "AttnMask"}},
{"sgd", {"Param", "LearningRate", "Grad", "MasterParam"}},
{"adagrad", {"Param", "Grad", "Moment", "LearningRate", "MasterParam"}},
{"adadelta",
{"Param", "Grad", "AvgSquaredGrad", "AvgSquaredUpdate", "MasterParam"}},
{"graph_khop_sampler", {"Row", "Eids", "Col_Ptr", "X"}},
{"nce",
{"Input",
Expand Down Expand Up @@ -311,6 +313,11 @@ std::map<std::string, std::set<std::string>> op_outs_map = {
"SavedMean",
"SavedVariance",
"ReserveSpace"}},
{"adadelta",
{"ParamOut",
"AvgSquaredGradOut",
"AvgSquaredUpdateOut",
"MasterParamOut"}},
{"unique", {"Out", "Index", "Indices", "Counts"}},
{"unique_consecutive", {"Out", "Index", "Counts"}},
{"generate_proposals", {"RpnRois", "RpnRoiProbs", "RpnRoisNum"}},
Expand Down Expand Up @@ -400,7 +407,11 @@ std::map<std::string, std::set<std::string>> op_passing_outs_map = {
"MeanGradOut",
"MasterParamOut"}},
{"ftrl", {"ParamOut", "SquaredAccumOut", "LinearAccumOut"}},
{"adadelta", {"ParamOut", "AvgSquaredGradOut", "AvgSquaredUpdateOut"}},
{"adadelta",
{"ParamOut",
"AvgSquaredGradOut",
"AvgSquaredUpdateOut",
"MasterParamOut"}},
{"adagrad", {"ParamOut", "MomentOut", "MasterParamOut"}},
{"adamax", {"ParamOut", "MomentOut", "InfNormOut"}},
{"dpsgd", {"ParamOut"}},
Expand Down
8 changes: 5 additions & 3 deletions paddle/phi/api/yaml/legacy_ops.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -20,13 +20,15 @@
data_type : x

- op : adadelta_
args : (Tensor param, Tensor grad, Tensor avg_squared_grad, Tensor avg_squared_update, float rho, float epsilon)
output : Tensor(param_out), Tensor(moment_out), Tensor(inf_norm_out)
args : (Tensor param, Tensor grad, Tensor avg_squared_grad, Tensor avg_squared_update, Tensor master_param, float rho, float epsilon, bool multi_precision)
output : Tensor(param_out), Tensor(moment_out), Tensor(inf_norm_out), Tensor(master_param_out)
infer_meta :
func : AdadeltaInferMeta
kernel :
func : adadelta
inplace : (param -> param_out), (avg_squared_grad -> moment_out), (avg_squared_update -> inf_norm_out)
data_type : param
optional : master_param
inplace : (param -> param_out), (avg_squared_grad -> moment_out), (avg_squared_update -> inf_norm_out), (master_param -> master_param_out)

- op : adagrad_
args : (Tensor param, Tensor grad, Tensor moment, Tensor learning_rate, Tensor master_param, float epsilon, bool multi_precision)
Expand Down
5 changes: 4 additions & 1 deletion paddle/phi/infermeta/multiary.cc
Original file line number Diff line number Diff line change
Expand Up @@ -38,11 +38,14 @@ void AdadeltaInferMeta(const MetaTensor& param,
const MetaTensor& grad,
const MetaTensor& avg_squared_grad,
const MetaTensor& avg_squared_update,
const MetaTensor& master_param,
float rho,
float epsilon,
bool multi_precision,
MetaTensor* param_out,
MetaTensor* avg_squared_grad_out,
MetaTensor* avg_squared_update_out) {
MetaTensor* avg_squared_update_out,
MetaTensor* master_param_out) {
auto param_dims = param.dims();
PADDLE_ENFORCE_EQ(
param_dims,
Expand Down
5 changes: 4 additions & 1 deletion paddle/phi/infermeta/multiary.h
Original file line number Diff line number Diff line change
Expand Up @@ -43,11 +43,14 @@ void AdadeltaInferMeta(const MetaTensor& param,
const MetaTensor& grad,
const MetaTensor& avg_squared_grad,
const MetaTensor& avg_squared_update,
const MetaTensor& master_param,
float rho,
float epsilon,
bool multi_precision,
MetaTensor* param_out,
MetaTensor* avg_squared_grad_out,
MetaTensor* avg_squared_update_out);
MetaTensor* avg_squared_update_out,
MetaTensor* master_param_outs);

void AdagradInferMeta(const MetaTensor& param,
const MetaTensor& grad,
Expand Down
5 changes: 4 additions & 1 deletion paddle/phi/kernels/adadelta_kernel.h
Original file line number Diff line number Diff line change
Expand Up @@ -24,10 +24,13 @@ void AdadeltaKernel(const Context& dev_ctx,
const DenseTensor& grad,
const DenseTensor& avg_squared_grad,
const DenseTensor& avg_squared_update,
const paddle::optional<DenseTensor>& master_param,
float rho,
float epsilon,
bool multi_precision,
DenseTensor* param_out,
DenseTensor* avg_squared_grad_out,
DenseTensor* avg_squared_update_out);
DenseTensor* avg_squared_update_out,
DenseTensor* master_param_outs);

} // namespace phi
9 changes: 7 additions & 2 deletions paddle/phi/kernels/gpu/adadelta_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -18,5 +18,10 @@
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/adadelta_kernel_impl.h"

PD_REGISTER_KERNEL(
adadelta, GPU, ALL_LAYOUT, phi::AdadeltaKernel, float, double) {}
PD_REGISTER_KERNEL(adadelta,
GPU,
ALL_LAYOUT,
phi::AdadeltaKernel,
float,
double,
phi::dtype::float16) {}
43 changes: 31 additions & 12 deletions paddle/phi/kernels/impl/adadelta_kernel_impl.h
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@

#pragma once

#include "paddle/phi/common/amp_type_traits.h"
#include "paddle/phi/kernels/adadelta_kernel.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
Expand All @@ -26,40 +27,58 @@ void AdadeltaKernel(const Context& dev_ctx,
const DenseTensor& grad,
const DenseTensor& avg_squared_grad,
const DenseTensor& avg_squared_update,
const paddle::optional<DenseTensor>& master_param,
float rho,
float epsilon,
bool multi_precision,
DenseTensor* param_out,
DenseTensor* avg_squared_grad_out,
DenseTensor* avg_squared_update_out) {
DenseTensor* avg_squared_update_out,
DenseTensor* master_param_outs) {
using MPDType = typename phi::dtype::template MPTypeTrait<T>::Type;
dev_ctx.template Alloc<T>(param_out);
dev_ctx.template Alloc<T>(avg_squared_grad_out);
dev_ctx.template Alloc<T>(avg_squared_update_out);
dev_ctx.template Alloc<MPDType>(avg_squared_grad_out);
dev_ctx.template Alloc<MPDType>(avg_squared_update_out);

T rho_ = static_cast<T>(rho);
T epsilon_ = static_cast<T>(epsilon);
MPDType rho_ = static_cast<MPDType>(rho);
MPDType epsilon_ = static_cast<MPDType>(epsilon);

auto eigen_param = EigenVector<T>::Flatten(param);
auto eigen_grad = EigenVector<T>::Flatten(grad);
// Squared gradient accumulator
auto eigen_avg_squared_grad = EigenVector<T>::Flatten(avg_squared_grad);
auto eigen_avg_squared_grad = EigenVector<MPDType>::Flatten(avg_squared_grad);
// Squared updates accumulator
auto eigen_avg_squared_update = EigenVector<T>::Flatten(avg_squared_update);
auto eigen_avg_squared_update =
EigenVector<MPDType>::Flatten(avg_squared_update);
auto eigen_param_out = EigenVector<T>::Flatten(*param_out);
auto eigen_avg_squared_grad_out =
EigenVector<T>::Flatten(*avg_squared_grad_out);
EigenVector<MPDType>::Flatten(*avg_squared_grad_out);
auto eigen_avg_squared_update_out =
EigenVector<T>::Flatten(*avg_squared_update_out);
EigenVector<MPDType>::Flatten(*avg_squared_update_out);
auto& place = *dev_ctx.eigen_device();

auto eigen_grad_cast = eigen_grad.template cast<MPDType>();

eigen_avg_squared_grad_out.device(place) =
rho_ * eigen_avg_squared_grad + (1 - rho_) * eigen_grad.square();
rho_ * eigen_avg_squared_grad + (1 - rho_) * eigen_grad_cast.square();
auto update = -((eigen_avg_squared_update + epsilon_) /
(eigen_avg_squared_grad_out + epsilon_))
.sqrt() *
eigen_grad;
eigen_grad_cast;
eigen_avg_squared_update_out.device(place) =
rho_ * eigen_avg_squared_update + (1 - rho_) * update.square();
eigen_param_out.device(place) = eigen_param + update;

if (multi_precision) {
auto eigen_master_param_out =
EigenVector<MPDType>::Flatten(*master_param_outs);
auto eigen_master_param = EigenVector<MPDType>::Flatten(*master_param);

eigen_master_param_out.device(place) = eigen_master_param + update;
eigen_param_out.device(place) =
(eigen_param.template cast<MPDType>() + update).template cast<T>();
} else {
eigen_param_out.device(place) = eigen_param + update.template cast<T>();
}
}

} // namespace phi
5 changes: 4 additions & 1 deletion paddle/phi/kernels/xpu/adadelta_kernel.cc
Original file line number Diff line number Diff line change
Expand Up @@ -25,11 +25,14 @@ void AdadeltaKernel(const Context& dev_ctx,
const DenseTensor& grad,
const DenseTensor& avg_squared_grad,
const DenseTensor& avg_squared_update,
const paddle::optional<DenseTensor>& master_param,
float rho,
float epsilon,
bool multi_precision,
DenseTensor* param_out,
DenseTensor* avg_squared_grad_out,
DenseTensor* avg_squared_update_out) {
DenseTensor* avg_squared_update_out,
DenseTensor* master_param_outs) {
dev_ctx.template Alloc<T>(param_out);
dev_ctx.template Alloc<T>(avg_squared_grad_out);
dev_ctx.template Alloc<T>(avg_squared_update_out);
Expand Down
36 changes: 36 additions & 0 deletions paddle/phi/ops/compat/adadelta_sig.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/core/compat/op_utils.h"

namespace phi {

KernelSignature AdadeltaOpArgumentMapping(const ArgumentMappingContext& ctx) {
if (ctx.IsDenseTensorInput("Grad")) {
return KernelSignature(
"adadelta",
{"Param", "Grad", "AvgSquaredGrad", "AvgSquaredUpdate", "MasterParam"},
{"rho", "epsilon", "multi_precision"},
{"ParamOut",
"AvgSquaredGradOut",
"AvgSquaredUpdateOut",
"MasterParamOut"});
}

return KernelSignature("unregistered", {}, {}, {});
}

} // namespace phi

PD_REGISTER_ARG_MAPPING_FN(adadelta, phi::AdadeltaOpArgumentMapping);
Loading