-
Notifications
You must be signed in to change notification settings - Fork 5.9k
Add SVD Op and it's GPU and CPU kernel #34953
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
14 commits
Select commit
Hold shift + click to select a range
7424311
Add SVD Op and it's GPU and CPU kernel
2742195759 e3e599f
Merge remote-tracking branch 'upstream/develop' into svd_op
2742195759 f62a777
Remove CUDAPlace in test_svd_op, make the test available in CPU package
2742195759 0de8cfa
modfity the file
2742195759 1f68694
merge develop
2742195759 c63b561
merge
2742195759 372e788
fix windows bug/ fix ROCM / fix test timeout
2742195759 fc90b3a
Merge remote-tracking branch 'upstream/develop' into svd_op
2742195759 d8b1726
for pass the CIs
2742195759 8e5226a
improve error report
2742195759 c3c35a1
for code review
2742195759 f57dead
some modification to test_svd_op
2742195759 ac8e2fb
change python code style
2742195759 84b4afa
expose the svd interface for document
2742195759 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,372 @@ | ||
| // Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
| // | ||
| // Licensed under the Apache License, Version 2.0 (the "License"); | ||
| // you may not use this file except in compliance with the License. | ||
| // You may obtain a copy of the License at | ||
| // | ||
| // http://www.apache.org/licenses/LICENSE-2.0 | ||
| // | ||
| // Unless required by applicable law or agreed to in writing, software | ||
| // distributed under the License is distributed on an "AS IS" BASIS, | ||
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| // See the License for the specific language governing permissions and | ||
| // limitations under the License. | ||
|
|
||
| #pragma once | ||
| #include <Eigen/src/Core/util/Constants.h> | ||
| #include <Eigen/Dense> | ||
| #include <Eigen/SVD> | ||
| #include <iostream> | ||
| #include "paddle/fluid/framework/ddim.h" | ||
| #include "paddle/fluid/framework/operator.h" | ||
| #include "paddle/fluid/framework/tensor.h" | ||
| #include "paddle/fluid/operators/math/blas.h" | ||
| #include "paddle/fluid/operators/math/functors.h" | ||
| #include "paddle/fluid/operators/math/math_function.h" | ||
| #include "paddle/fluid/platform/device_context.h" | ||
| #include "paddle/fluid/platform/for_range.h" | ||
|
|
||
| namespace paddle { | ||
| namespace operators { | ||
| namespace math { | ||
| using Tensor = framework::Tensor; | ||
| using InTensors = std::vector<const Tensor*>; | ||
| using OutTensors = std::vector<Tensor*>; | ||
| using OpName = std::string; | ||
|
|
||
| template <typename T> | ||
| void EigenSvd(const T* X, T* U, T* VH, T* S, int rows, int cols, | ||
| int full = false) { | ||
| auto flag = Eigen::DecompositionOptions::ComputeThinU | | ||
| Eigen::DecompositionOptions::ComputeThinV; | ||
| if (full) { | ||
| flag = Eigen::DecompositionOptions::ComputeFullU | | ||
| Eigen::DecompositionOptions::ComputeFullV; | ||
| } | ||
| Eigen::BDCSVD< | ||
| Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>> | ||
| svd(2, 2, flag); | ||
| /*NOTE(xiongkun03) Eigen::Matrix API need non-const pointer.*/ | ||
| T* input = const_cast<T*>(X); | ||
| auto m = Eigen::Map< | ||
| Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>( | ||
| input, rows, cols); | ||
| svd.compute(m); | ||
| Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> V_trans = | ||
| svd.matrixV().transpose(); | ||
| memcpy(U, svd.matrixU().data(), svd.matrixU().size() * sizeof(T)); | ||
| memcpy(VH, V_trans.data(), V_trans.size() * sizeof(T)); | ||
| memcpy(S, svd.singularValues().data(), | ||
| svd.singularValues().size() * sizeof(T)); | ||
| } | ||
|
|
||
| template <typename T> | ||
| void BatchSvd(const T* X, T* U, T* VH, T* S, int rows, int cols, int batches, | ||
| int full = false) { | ||
| int stride = rows * cols; | ||
| int k = std::min(rows, cols); | ||
| int stride_u = full ? rows * rows : k * rows; | ||
| int stride_v = full ? cols * cols : k * cols; | ||
| for (int i = 0; i < batches; ++i) { | ||
| EigenSvd<T>(X + i * stride, U + i * stride_u, VH + i * stride_v, S + i * k, | ||
| rows, cols, full); | ||
| } | ||
| return; | ||
| } | ||
|
|
||
| template <typename T> | ||
| struct PowFunctor { | ||
| PowFunctor(const T* input, T* output, int64_t numel, float exp) | ||
| : input_(input), output_(output), numel_(numel), exp_(exp) {} | ||
|
|
||
| HOSTDEVICE void operator()(int64_t idx) const { | ||
| output_[idx] = pow(input_[idx], exp_); | ||
| } | ||
| const T* input_; | ||
| T* output_; | ||
| int64_t numel_; | ||
| float exp_; | ||
| }; | ||
|
|
||
| static std::vector<int> GetBroadcastShape(InTensors ins) { | ||
| // TODO(xiongkun03) check the operators and output | ||
| PADDLE_ENFORCE_EQ(ins.size(), 2, platform::errors::InvalidArgument( | ||
| "GetBroadcastShape Receive 2 tensors" | ||
| "but got [%d]", | ||
| ins.size())); | ||
| auto x_dim = ins[0]->dims(); | ||
| auto y_dim = ins[1]->dims(); | ||
| std::vector<int> broadcast_shape = | ||
| (x_dim.size() > y_dim.size() ? framework::vectorize<int>(x_dim) | ||
| : framework::vectorize<int>(y_dim)); | ||
| int rank_min = std::min(x_dim.size(), y_dim.size()); | ||
| int rank_x = x_dim.size(); | ||
| int rank_y = y_dim.size(); | ||
| int final_rank = broadcast_shape.size(); | ||
| for (int i = 1; i <= rank_min; ++i) { | ||
| if (x_dim[rank_x - i] == y_dim[rank_y - i]) { | ||
| broadcast_shape[final_rank - i] = x_dim[rank_x - i]; | ||
| continue; | ||
| } | ||
| if (x_dim[rank_x - i] == 1) { | ||
| broadcast_shape[final_rank - i] = y_dim[rank_y - i]; | ||
| continue; | ||
| } | ||
| if (y_dim[rank_y - i] == 1) { | ||
| broadcast_shape[final_rank - i] = x_dim[rank_x - i]; | ||
| continue; | ||
| } | ||
| PADDLE_THROW(platform::errors::InvalidArgument( | ||
| "Wrong Input Shape in broadcast operator: " | ||
| "Input(X)'s shape must follow the broadcast rule with Input(Y)'s " | ||
| "shape, but received [%s] (X) vs [%s] (Y).", | ||
| x_dim, y_dim)); | ||
| } | ||
| return broadcast_shape; | ||
| } | ||
|
|
||
| template <typename DeviceContext, typename T> | ||
| struct DeviceIndependenceTensorOperations { | ||
| // 1. Device indenpendence, for kernel reuse. | ||
| // 2. Input and output is always tensor type. | ||
| // 3. output Tensor is alway allocated | ||
| // 4. Basic Tensor operator is supported | ||
| // 5. The Reused Operator Kernel should only be considered as | ||
| // a wrap function | ||
| using NameInTensorMap = | ||
| std::map<std::string, std::vector<const framework::Tensor*>>; | ||
| using NameOutTensor = std::vector<std::string>; | ||
|
|
||
| explicit DeviceIndependenceTensorOperations( | ||
| const framework::ExecutionContext& context) | ||
| : context(context) {} | ||
|
|
||
| framework::Tensor Pow(const framework::Tensor& x, float exp) { | ||
| framework::Tensor out; | ||
| auto for_range = GetForRange(x.numel()); | ||
| int numel = x.numel(); | ||
| PowFunctor<T> functor(x.data<T>(), out.mutable_data<T>(x.dims(), x.place()), | ||
| numel, exp); | ||
| for_range(functor); | ||
| return out; | ||
| } | ||
| framework::Tensor Matmul(const framework::Tensor& mat_a, | ||
| const framework::Tensor& mat_b, bool trans_a = false, | ||
| bool trans_b = false) { | ||
| framework::AttributeMap attrs; | ||
| attrs["trans_x"] = trans_a; | ||
| attrs["trans_y"] = trans_b; | ||
| NameInTensorMap inputs({{"X", {&mat_a}}, {"Y", {&mat_b}}}); | ||
| auto a_dim = mat_a.dims(); | ||
| auto b_dim = mat_b.dims(); | ||
| std::vector<int> x_vec = framework::vectorize<int>(a_dim); | ||
| x_vec[x_vec.size() - 2] = a_dim[a_dim.size() - (trans_a ? 1 : 2)]; | ||
| x_vec[x_vec.size() - 1] = b_dim[b_dim.size() - (trans_b ? 2 : 1)]; | ||
| return CreateOpRunAndReturnTensor("matmul_v2", inputs, attrs, x_vec); | ||
| } | ||
| // transpose the last two dimision | ||
| framework::Tensor Transpose(const framework::Tensor& x) { | ||
| framework::Tensor out; | ||
| auto x_dim = x.dims(); | ||
| auto x_vec = framework::vectorize<int>(x_dim); | ||
| int rank = x_vec.size(); | ||
| std::swap(x_vec[rank - 1], x_vec[rank - 2]); | ||
| std::vector<int> out_shape = x_vec; | ||
| std::vector<int> axis(rank); | ||
| for (int i = 0; i < rank; ++i) { | ||
| axis[i] = i; | ||
| } | ||
| std::swap(axis[rank - 1], axis[rank - 2]); | ||
| framework::AttributeMap attrs; | ||
| attrs["axis"] = axis; | ||
| NameInTensorMap inputs({{"X", {&x}}}); | ||
| return CreateOpRunAndReturnTensor("transpose2", inputs, attrs, out_shape, | ||
| {"Out", "XShape"}); | ||
| } | ||
|
|
||
| framework::Tensor Diag(const framework::Tensor& x, int offset = 0, | ||
| int padding_value = 0) { | ||
| framework::AttributeMap attrs; | ||
| attrs["offset"] = offset; | ||
| attrs["padding_value"] = padding_value; | ||
| NameInTensorMap inputs({{"X", {&x}}}); | ||
| int x_rank = x.dims().size(); | ||
| std::vector<int> out_shape; | ||
| if (x_rank == 2) { | ||
| PADDLE_ENFORCE_EQ(x.dims()[0], x.dims()[1], | ||
| platform::errors::InvalidArgument( | ||
| "if X is a Matrix, then X must be square")); | ||
| out_shape.push_back(x.dims()[0]); | ||
| } else if (x_rank == 1) { | ||
| out_shape.push_back(x.dims()[0]); | ||
| out_shape.push_back(x.dims()[0]); | ||
| } else { | ||
| PADDLE_THROW( | ||
| platform::errors::InvalidArgument("Rank must less or equal than 2")); | ||
| } | ||
| return CreateOpRunAndReturnTensor("diag_v2", inputs, attrs, out_shape); | ||
| } | ||
|
|
||
| framework::Tensor Add(const framework::Tensor& x, | ||
| const framework::Tensor& y) { | ||
| InTensors ins({&x, &y}); | ||
| framework::AttributeMap attrs; | ||
| attrs["axis"] = -1; | ||
| std::vector<int> out_shape = GetBroadcastShape({&x, &y}); | ||
| NameInTensorMap inputs({{"X", {&x}}, {"Y", {&y}}}); | ||
| return CreateOpRunAndReturnTensor("elementwise_add", inputs, attrs, | ||
| out_shape); | ||
| } | ||
|
|
||
| framework::Tensor Mul(const framework::Tensor& x, | ||
| const framework::Tensor& y) { | ||
| InTensors ins({&x, &y}); | ||
| framework::AttributeMap attrs; | ||
| attrs["axis"] = -1; | ||
| std::vector<int> out_shape = GetBroadcastShape({&x, &y}); | ||
| NameInTensorMap inputs({{"X", {&x}}, {"Y", {&y}}}); | ||
| return CreateOpRunAndReturnTensor("elementwise_mul", inputs, attrs, | ||
| out_shape); | ||
| } | ||
|
|
||
| framework::Tensor Sub(const framework::Tensor& x, | ||
| const framework::Tensor& y) { | ||
| InTensors ins({&x, &y}); | ||
| framework::AttributeMap attrs; | ||
| attrs["axis"] = -1; | ||
| std::vector<int> out_shape = GetBroadcastShape({&x, &y}); | ||
| NameInTensorMap inputs({{"X", {&x}}, {"Y", {&y}}}); | ||
| return CreateOpRunAndReturnTensor("elementwise_sub", inputs, attrs, | ||
| out_shape); | ||
| } | ||
|
|
||
| const framework::Tensor Unsqueeze(const framework::Tensor& x, int axis = 0) { | ||
| // don't copy data, only change the dims | ||
| framework::Tensor out; | ||
| out.ShareDataWith(x); | ||
| std::vector<int> out_shape = framework::vectorize<int>(x.dims()); | ||
| if (axis >= 0) { | ||
| auto index = (out_shape.begin() + axis); | ||
| out_shape.insert(index, 1); | ||
| } else if (axis < 0) { | ||
| auto index = (out_shape.end() + axis + 1); | ||
| out_shape.insert(index, 1); | ||
| } | ||
| out.Resize(framework::make_ddim(out_shape)); | ||
| return out; | ||
| } | ||
|
|
||
| framework::Tensor Zeros(std::vector<int> shape, | ||
| framework::proto::VarType::Type dtype, | ||
| float fill_value) { | ||
| framework::AttributeMap attrs; | ||
| attrs["dtype"] = dtype; | ||
| attrs["shape"] = shape; | ||
| attrs["value"] = fill_value; | ||
| NameInTensorMap inputs({}); | ||
| return CreateOpRunAndReturnTensor("fill_constant", inputs, attrs, shape); | ||
| } | ||
|
|
||
| framework::Tensor Infinits(std::vector<int> shape, | ||
| framework::proto::VarType::Type dtype) { | ||
| framework::AttributeMap attrs; | ||
| attrs["dtype"] = dtype; | ||
| attrs["shape"] = shape; | ||
| attrs["str_value"] = std::string("inf"); | ||
| NameInTensorMap inputs({}); | ||
| return CreateOpRunAndReturnTensor("fill_constant", inputs, attrs, shape); | ||
| } | ||
|
|
||
| framework::Tensor Eye(int n, framework::proto::VarType::Type dtype) { | ||
| auto output = Zeros({n}, dtype, 1); | ||
| auto ret = Diag(output); | ||
| return ret; | ||
| } | ||
|
|
||
| framework::Tensor Slice(const framework::Tensor& x, std::vector<int> axes, | ||
| std::vector<int> starts, std::vector<int> ends) { | ||
| std::vector<int> new_axes = axes; | ||
| NameInTensorMap inputs({{"Input", {&x}}}); | ||
| std::vector<int> out_shape = framework::vectorize<int>(x.dims()); | ||
| int rank = out_shape.size(); | ||
| PADDLE_ENFORCE_EQ( | ||
| axes.size(), starts.size(), | ||
| platform::errors::InvalidArgument("Slice Operator Argument Invalided")); | ||
| PADDLE_ENFORCE_EQ( | ||
| ends.size(), starts.size(), | ||
| platform::errors::InvalidArgument("Slice Operator Argument Invalided")); | ||
| for (unsigned int i = 0; i < axes.size(); ++i) { | ||
| int axis = axes[i]; | ||
| if (axis < 0) axis = rank + axis; | ||
| new_axes[i] = axis; // change negative to positive | ||
| int st = starts[i]; | ||
| int ed = ends[i]; | ||
| PADDLE_ENFORCE_GT(ed, st, | ||
| platform::errors::InvalidArgument( | ||
| "C++ Slice Operation Not Support End < Start")); | ||
| out_shape[axis] = ed - st; | ||
| } | ||
| framework::AttributeMap attrs; | ||
| attrs["axes"] = new_axes; | ||
| attrs["starts"] = starts; | ||
| attrs["ends"] = ends; | ||
| return CreateOpRunAndReturnTensor("slice", inputs, attrs, out_shape); | ||
| } | ||
|
|
||
| private: | ||
| const framework::ExecutionContext& context; | ||
| BlasT<DeviceContext, T> GetBlas() { | ||
| return math::GetBlas<DeviceContext, T>(context); | ||
| } | ||
| platform::ForRange<DeviceContext> GetForRange(int numel) { | ||
| auto& dev_ctx = context.template device_context<DeviceContext>(); | ||
| return platform::ForRange<DeviceContext>(dev_ctx, numel); | ||
| } | ||
|
|
||
| framework::Tensor CreateOpRunAndReturnTensor( | ||
| const std::string& type, const NameInTensorMap& inputs, | ||
| const framework::AttributeMap& attrs, std::vector<int> out_shape, | ||
| NameOutTensor out_str = {"Out"}) { | ||
| // varialble set dims must be LoDTensor / SelectedRowTensor | ||
| framework::Scope& local_scope = context.scope().NewScope(); | ||
|
|
||
| framework::VariableNameMap op_outputs; | ||
| for (auto out_name : out_str) { | ||
| local_scope.Var("tmp_" + out_name)->GetMutable<framework::LoDTensor>(); | ||
| op_outputs[out_name].emplace_back("tmp_" + out_name); | ||
| } | ||
| auto out_var = local_scope.Var("tmp_Out"); // return the Out | ||
| // create Out Tensor and allocat memory | ||
| out_var->GetMutable<framework::LoDTensor>()->mutable_data<T>( | ||
| framework::make_ddim(out_shape), context.GetPlace()); | ||
| // framework::make_ddim(out_shape) | ||
| framework::VariableNameMap op_inputs; | ||
| int counter = 0; | ||
| for (auto item : inputs) { | ||
| auto& tensors = item.second; | ||
| std::vector<std::string> name_vector; | ||
| for (auto each_tensor : tensors) { | ||
| // create score variable and reset the tensor. | ||
| std::string _name = "tmp" + std::to_string(counter++); | ||
| auto in_var = local_scope.Var(_name); // create | ||
| framework::LoDTensor tmp_tns; | ||
| tmp_tns.ShareDataWith(*each_tensor); // tensor -> lodtensor | ||
| (*in_var->GetMutable<framework::LoDTensor>()) = | ||
| tmp_tns; // initialize and set value | ||
| name_vector.emplace_back(_name); | ||
| } | ||
| op_inputs[item.first] = name_vector; | ||
| } | ||
| auto op = | ||
| framework::OpRegistry::CreateOp(type, op_inputs, op_outputs, attrs); | ||
| op->Run(local_scope, context.GetPlace()); | ||
| framework::Tensor out; | ||
| out.ShareDataWith(*(out_var->GetMutable<framework::LoDTensor>())); | ||
| out.Resize(framework::make_ddim(out_shape)); | ||
| context.scope().DeleteScope(&local_scope); | ||
| return out; | ||
| } | ||
| }; | ||
| } // namespace math | ||
| } // namespace operators | ||
| } // namespace paddle | ||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.