Skip to content
175 changes: 175 additions & 0 deletions paddle/fluid/operators/mkldnn/slice_mkldnn_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,175 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

using paddle::framework::Tensor;

template <typename T>
class SliceMKLDNNKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
this->RunKernel(ctx);
}

void RunKernel(const framework::ExecutionContext& ctx) const {
const auto& dev_ctx =
ctx.template device_context<platform::MKLDNNDeviceContext>();
const auto& onednn_engine = dev_ctx.GetEngine();

auto* x = ctx.Input<Tensor>("Input");
auto* out = ctx.Output<Tensor>("Out");

auto x_vec_dims = framework::vectorize(x->dims());
auto out_vec_dims = framework::vectorize(out->dims());

auto axes_int = ctx.Attr<std::vector<int>>("axes");
auto starts_int = ctx.Attr<std::vector<int>>("starts");
auto ends_int = ctx.Attr<std::vector<int>>("ends");

std::vector<int64_t> axes(ctx.Attr<std::vector<int>>("axes").begin(),
ctx.Attr<std::vector<int>>("axes").end());
std::vector<int64_t> starts(ctx.Attr<std::vector<int>>("starts").begin(),
ctx.Attr<std::vector<int>>("starts").end());
std::vector<int64_t> ends(ctx.Attr<std::vector<int>>("ends").begin(),
ctx.Attr<std::vector<int>>("ends").end());

auto decrease_axis = ctx.Attr<std::vector<int>>("decrease_axis");

std::vector<int64_t> offsets(x_vec_dims.size(), 0);
std::vector<int64_t> slice_dims(x_vec_dims);

for (size_t i = 0; i < axes.size(); ++i) {
starts[i] = starts[i] < 0 ? x_vec_dims[axes[i]] + starts[i] : starts[i];
ends[i] = ends[i] < 0 ? x_vec_dims[axes[i]] + ends[i]
: std::min(ends[i], x_vec_dims[axes[i]]);
offsets[axes[i]] = starts[i];
slice_dims[axes[i]] = ends[i] - starts[i];
}

mkldnn::memory::data_type x_type = framework::ToMKLDNNDataType(x->type());
auto key = platform::CreateKey(dev_ctx, x_vec_dims, axes, starts, ends,
x->format(), x_type);

platform::ReorderMKLDNNHandler reorder_handler(
x_vec_dims, x->type(), x_type, dev_ctx, onednn_engine, key);

auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
x->format(), platform::to_void_cast(x->data<T>()));
auto slice_mem_p = reorder_handler.AcquireSubmemory(slice_dims, offsets,
reorder_src_memory_p);
auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
out, slice_dims, 0, x->format(), ctx.GetPlace());

auto reorder_p =
reorder_handler.AcquireReorder(reorder_dst_memory_p, slice_mem_p);
auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
reorder_p->execute(astream, *slice_mem_p, *reorder_dst_memory_p);
astream.wait();

out->set_layout(framework::DataLayout::kMKLDNN);
out->set_format(platform::GetMKLDNNFormat(
reorder_dst_memory_p->get_desc().reshape(out_vec_dims)));
}
};

template <typename T>
class SliceGradMKLDNNKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
this->RunKernel(ctx);
}

void RunKernel(const framework::ExecutionContext& ctx) const {
const auto& dev_ctx =
ctx.template device_context<platform::MKLDNNDeviceContext>();
const auto& onednn_engine = dev_ctx.GetEngine();

auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* dx = ctx.Output<Tensor>(framework::GradVarName("Input"));

auto dx_vec_dims = framework::vectorize(dx->dims());
auto dout_vec_dims = framework::vectorize(dout->dims());

auto axes_int = ctx.Attr<std::vector<int>>("axes");
auto starts_int = ctx.Attr<std::vector<int>>("starts");
auto ends_int = ctx.Attr<std::vector<int>>("ends");

std::vector<int64_t> axes(ctx.Attr<std::vector<int>>("axes").begin(),
ctx.Attr<std::vector<int>>("axes").end());
std::vector<int64_t> starts(ctx.Attr<std::vector<int>>("starts").begin(),
ctx.Attr<std::vector<int>>("starts").end());
std::vector<int64_t> ends(ctx.Attr<std::vector<int>>("ends").begin(),
ctx.Attr<std::vector<int>>("ends").end());

auto decrease_axis = ctx.Attr<std::vector<int>>("decrease_axis");

std::vector<int64_t> offsets(dx_vec_dims.size(), 0);
std::vector<int64_t> slice_dims(dx_vec_dims);

for (size_t i = 0; i < axes.size(); ++i) {
starts[i] = starts[i] < 0 ? dx_vec_dims[axes[i]] + starts[i] : starts[i];
ends[i] = ends[i] < 0 ? dx_vec_dims[axes[i]] + ends[i]
: std::min(ends[i], dx_vec_dims[axes[i]]);
offsets[axes[i]] = starts[i];
slice_dims[axes[i]] = ends[i] - starts[i];
}

mkldnn::memory::data_type dout_type =
framework::ToMKLDNNDataType(dout->type());
mkldnn::memory::desc md(dout_vec_dims, platform::MKLDNNGetDataType<T>(),
dout->format());
mkldnn::memory::format_tag reorder_format_tag =
platform::GetMKLDNNFormat(md.reshape(slice_dims));

auto key = platform::CreateKey(dev_ctx, dout_vec_dims, axes, starts, ends,
reorder_format_tag, dout_type);

platform::ReorderMKLDNNHandler reorder_handler(
slice_dims, dout->type(), dout_type, dev_ctx, onednn_engine, key);

auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
reorder_format_tag, platform::to_void_cast(dout->data<T>()));
auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
dx, dx_vec_dims, 0, reorder_format_tag, ctx.GetPlace());
memset(dx->data<T>(), 0, reorder_dst_memory_p->get_desc().get_size());

auto slice_mem_p = reorder_handler.AcquireSubmemory(slice_dims, offsets,
reorder_dst_memory_p);

auto reorder_p =
reorder_handler.AcquireReorder(slice_mem_p, reorder_src_memory_p);
auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
reorder_p->execute(astream, *reorder_src_memory_p, *slice_mem_p);
astream.wait();

dx->set_layout(framework::DataLayout::kMKLDNN);
dx->set_format(reorder_format_tag);
}
};
} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_KERNEL(slice, MKLDNN, paddle::platform::CPUPlace,
ops::SliceMKLDNNKernel<float>,
ops::SliceMKLDNNKernel<paddle::platform::bfloat16>);

namespace ops = paddle::operators;
REGISTER_OP_KERNEL(slice_grad, MKLDNN, paddle::platform::CPUPlace,
ops::SliceGradMKLDNNKernel<float>,
ops::SliceGradMKLDNNKernel<paddle::platform::bfloat16>);
2 changes: 1 addition & 1 deletion paddle/fluid/operators/mkldnn/split_mkldnn_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -105,7 +105,7 @@ class SplitMKLDNNKernel : public framework::OpKernel<T> {

for (size_t i = 0; i < outs_number; ++i) {
auto out_vec_dims = framework::vectorize(outs[i]->dims());
auto slice_mem_p = reorder_handler.AcquireSrcSubmemory(
auto slice_mem_p = reorder_handler.AcquireSubmemory(
out_vec_dims, offset, reorder_src_memory_p, i);

auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
Expand Down
54 changes: 51 additions & 3 deletions paddle/fluid/operators/slice_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -132,6 +132,26 @@ class SliceOp : public framework::OperatorWithKernel {
if (platform::is_cuda_pinned_place(in_tensor.place())) {
return framework::OpKernelType(in_tensor.type(), ctx.device_context());
}

#ifdef PADDLE_WITH_MKLDNN
auto input_data_type =
framework::OperatorWithKernel::IndicateVarDataType(ctx, "Input");

if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
// OneDNN uses blocking format, which cannot be always supported with
// reorders, because if blocked dimension is not divisible by 8 or
// 16(depending on which blocking format is used) submemory cannot be
// created, so in that scenario a fallback is needed
auto tmp_md = dnnl::memory::desc(
framework::vectorize(ctx.Input<Tensor>("Input")->dims()),
dnnl::memory::data_type::f32, ctx.Input<Tensor>("Input")->format());
if (tmp_md.data.format_desc.blocking.inner_nblks == 0)
return framework::OpKernelType(input_data_type, ctx.GetPlace(),
framework::DataLayout::kMKLDNN,
framework::LibraryType::kMKLDNN);
}
#endif

return framework::OpKernelType(in_tensor.type(), in_tensor.place());
}
return framework::OpKernelType(
Expand Down Expand Up @@ -216,6 +236,14 @@ class SliceOpMaker : public framework::OpProtoAndCheckerMaker {
.SetDefault({});
AddAttr<std::vector<int>>("decrease_axis", "(list<int>) decrease_axis")
.SetDefault({});
AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddAttr<std::string>(
"mkldnn_data_type",
"(string, default \"float32\"). Data type of mkldnn kernel")
.SetDefault("float32")
.InEnum({"float32", "bfloat16"});
AddComment(R"DOC(
Slice Operator.

Expand Down Expand Up @@ -278,12 +306,32 @@ class SliceOpGrad : public framework::OperatorWithKernel {
ctx->SetOutputDim(x_grad_name, x_dims);
}
}

framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out")),
ctx.device_context());
auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out"));

#ifdef PADDLE_WITH_MKLDNN
if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
// OneDNN uses blocking format, which cannot be always supported with
// reorders, because if blocked dimension is not divisible by 8 or
// 16(depending on which blocking format is used) submemory cannot be
// created, so in that scenario a fallback is needed
auto tmp_md = dnnl::memory::desc(
framework::vectorize(
ctx.Input<Tensor>(framework::GradVarName("Out"))->dims()),
dnnl::memory::data_type::f32,
ctx.Input<Tensor>(framework::GradVarName("Out"))->format());
if (tmp_md.data.format_desc.blocking.inner_nblks == 0)
return framework::OpKernelType(input_data_type, ctx.GetPlace(),
framework::DataLayout::kMKLDNN,
framework::LibraryType::kMKLDNN);
}
#endif
return framework::OpKernelType(input_data_type, ctx.GetPlace());
}

framework::OpKernelType GetKernelTypeForVar(
const std::string &var_name, const Tensor &tensor,
const framework::OpKernelType &expected_kernel_type) const override {
Expand Down
7 changes: 3 additions & 4 deletions paddle/fluid/operators/split_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -78,10 +78,9 @@ class SplitOp : public framework::OperatorWithKernel {

#ifdef PADDLE_WITH_MKLDNN
if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
// OneDNN uses blocking format, which cannot be always
// supported with reorders, because if blocked dimension is not divisible
// by
// 8 or 16(depending on which blocking format is used) submemory cannot be
// OneDNN uses blocking format, which cannot be always supported with
// reorders, because if blocked dimension is not divisible by 8 or
// 16(depending on which blocking format is used) submemory cannot be
// created, so in that scenario a fallback is needed
auto tmp_md = dnnl::memory::desc(
framework::vectorize(ctx.Input<Tensor>("X")->dims()),
Expand Down
4 changes: 2 additions & 2 deletions paddle/fluid/platform/mkldnn_reuse.h
Original file line number Diff line number Diff line change
Expand Up @@ -1105,9 +1105,9 @@ class ReorderMKLDNNHandler : public MKLDNNHandler {
return this->AcquireMemory(dims_, dtype_, fmt, ptr, "@user_src_mem_p");
}

std::shared_ptr<mkldnn::memory> AcquireSrcSubmemory(
std::shared_ptr<mkldnn::memory> AcquireSubmemory(
const std::vector<int64_t>& dims, const std::vector<int64_t>& offset,
const std::shared_ptr<mkldnn::memory>& mem_p, int submemory_number) {
const std::shared_ptr<mkldnn::memory>& mem_p, int submemory_number = 0) {
std::string local_key = key_;
local_key.append("@submem")
.append(std::to_string(submemory_number))
Expand Down
Loading