Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -92,7 +92,7 @@ bash setup_cluster.sh
Delete the RayCluster Custom Resource:

```bash
cd docs/examples/configs
cd ray_cluster_configs
kubectl delete -f ray_kubernetes_cluster.yaml
kubectl delete -f ray_kubernetes_ingress.yaml
```
Expand All @@ -108,7 +108,7 @@ Finally, Delete the node first and then delete EKS Cluster:

```bash
kubectl get nodes -o name | xargs kubectl delete
eksctl delete cluster --region us-west-2 --name user
eksctl delete cluster --region <YOUR_AWS_REGION> --name <CLUSTER_NAME>
```

## Step to Push Data to Hugging Face Hub CLI
Expand Down
38 changes: 38 additions & 0 deletions benchmark/configs/config_FedGAT.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
dual_weight: 5.e-4
aug_lagrange_rho: 6.e-4
model_lr: 0.06
model_regularisation: 2.e-3
dual_lr: 1.e-2
num_local_iters: 1
train_rounds: 35
global_rounds: 35
gamma: 0.2
attn_func_parameter: 0.2
# lambda x: AttnFunction(x, 0.2)
attn_func_domain: [-5, 5, 500]
sample_probab: 1
hidden_dim: 8
num_heads: 8
max_deg: 16

# dataset: ogbn-arxiv
dataset: cora
n_trainer: 20
num_layers: 2
num_hops: 2
gpu: false
momentum: 0.0
iid_beta: 10000
logdir: ./runs
device: cpu
optim_kind: Adam
glob_comm: FedAvg
optim_reset: False
dampening: 0.0
limit_node_degree: 150
# method: DistributedGAT
# method: CentralizedGAT
method: FedGAT
batch_size: False
vecgen: True
communication_grad: True
11 changes: 11 additions & 0 deletions benchmark/configs/config_FedGCN.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
dataset: cora
fedtype: fedgcn
global_rounds: 100
local_step: 3
learning_rate: 0.5
n_trainer: 2
num_layers: 2
num_hops: 2
gpu: false
iid_beta: 10000
logdir: ./runs
29 changes: 29 additions & 0 deletions benchmark/configs/config_GC_FedAvg.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
# general:
model: 'FedAvg'

# dataset
dataset: "IMDB-BINARY"
is_multiple_dataset: False
datapath: './data'
convert_x: False
overlap: False

# setup
device: 'cpu'
seed: 10
seed_split_data: 42

# model_parameters
num_trainers: 2
num_rounds: 200
local_epoch: 1
lr: 0.001
weight_decay: 0.0005
nlayer: 3
hidden: 64
dropout: 0.5
batch_size: 128

# output
outbase: './outputs'
save_files: False
30 changes: 30 additions & 0 deletions benchmark/configs/config_GC_FedProx.yaml
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

make sure you explain why we need benchmark folder in the document, if it's previous experiments, make sure it's runnable

Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
# general:
model: 'FedAvg'

# dataset:
dataset: "IMDB-BINARY"
is_multiple_dataset: False
datapath: './data'
convert_x: False
overlap: False

# setup:
device: 'cpu'
seed: 10
seed_split_data: 42

# model_parameters:
num_trainers: 2
num_rounds: 200
local_epoch: 1
lr: 0.001
weight_decay: 0.0005
nlayer: 3
hidden: 64
dropout: 0.5
batch_size: 128
mu: 0.01

# output:
outbase: './outputs'
save_files: False
33 changes: 33 additions & 0 deletions benchmark/configs/config_GC_GCFL+.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
# general:
model: 'GCFL'

# dataset:
dataset: "IMDB-BINARY"
is_multiple_dataset: False
datapath: './data'
convert_x: False
overlap: False

# setup:
device: 'cpu'
seed: 10
seed_split_data: 42

# model_parameters:
num_trainers: 2
num_rounds: 200
local_epoch: 1
lr: 0.001
weight_decay: 0.0005
nlayer: 3
hidden: 64
dropout: 0.5
batch_size: 128
standardize: False
seq_length: 5
epsilon1: 0.05
epsilon2: 0.1

# output:
outbase: './outputs'
save_files: False
33 changes: 33 additions & 0 deletions benchmark/configs/config_GC_GCFL+dWs.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
# general:
model: 'GCFL'

# dataset:
dataset: "IMDB-BINARY"
is_multiple_dataset: False
datapath: './data'
convert_x: False
overlap: False

# setup:
device: 'cpu'
seed: 10
seed_split_data: 42

# model_parameters:
num_trainers: 2
num_rounds: 200
local_epoch: 1
lr: 0.001
weight_decay: 0.0005
nlayer: 3
hidden: 64
dropout: 0.5
batch_size: 128
standardize: False
seq_length: 5
epsilon1: 0.05
epsilon2: 0.1

# output:
outbase: './outputs'
save_files: False
33 changes: 33 additions & 0 deletions benchmark/configs/config_GC_GCFL.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
# general:
model: 'GCFL'

# dataset:
dataset: "IMDB-BINARY"
is_multiple_dataset: False
datapath: './data'
convert_x: False
overlap: False

# setup:
device: 'cpu'
seed: 10
seed_split_data: 42

# model_parameters:
num_trainers: 2
num_rounds: 200
local_epoch: 1
lr: 0.001
weight_decay: 0.0005
nlayer: 3
hidden: 64
dropout: 0.5
batch_size: 128
standardize: False
seq_length: 5
epsilon1: 0.05
epsilon2: 0.1

# output:
outbase: './outputs'
save_files: False
28 changes: 28 additions & 0 deletions benchmark/configs/config_GC_SelfTrain.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
# general:
model: 'SelfTrain'

# dataset
dataset: "IMDB-BINARY"
is_multiple_dataset: False
datapath: './data'
convert_x: False
overlap: False

# setup
device: 'cpu'
seed: 10
seed_split_data: 42

# model_parameters
num_trainers: 2
local_epoch: 1
lr: 0.001
weight_decay: 0.0005
nlayer: 3
hidden: 64
dropout: 0.5
batch_size: 128

# output
outbase: './outputs'
save_files: False
24 changes: 24 additions & 0 deletions benchmark/configs/config_LP.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
# general:
method: FedLink
fedgraph_task: LP
# dataset:
country_codes: ["US", "BR"] # country_codes = ['US', 'BR', 'ID', 'TR', 'JP']
dataset_path: data/LPDataset
global_file_path: data/LPDataset/data_five_countries.txt
traveled_file_path: data/LPDataset/traveled_users.txt

# setup:
device: gpu
use_buffer: false
buffer_size: 300000
online_learning: false
seed: 10

# model_parameters:
global_rounds: 8
local_steps: 3
repeat_time: 1
hidden_channels: 64

# output:
record_results: false
Loading