Skip to content

ziplab/ZPressor

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ZPressor Logo

ZPressor: Bottleneck-Aware Compression for Scalable Feed-Forward 3DGS

Weijie Wang · Donny Y. Chen · Zeyu Zhang · Duochao Shi · Akide Liu · Bohan Zhuang

NeurIPS 2025

Logo

ZPressor is an architecture-agnostic module that compresses multi-view inputs for scalable feed-forward 3DGS.

News

  • 29/09/25 Update: Check out our VolSplat, a fancy framework for improving multi-view consistency and geometric accuracy for feed-forward 3DGS with voxel-aligned prediction.
  • 09/06/25 Update: Check out our PM-Loss, a novel regularization loss for improving feed-forward 3DGS quality based on a learned point map.

Installation

Since the pixelSplat/MVSplat/DepthSplat environments are largely consistent, we will provide an environment capable of running all three codebases simultaneously:

conda create -n zpressor python=3.10
conda activate zpressor
pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 xformers==0.0.28.post3 --index-url https://download.pytorch.org/whl/cu118
pip install -r requirements.txt

Then install ZPressor as a package:

cd zpressor
pip install -e . # install the zpressor package
cd ..

Model Zoo

Our pre-trained models are hosted on Hugging Face. Please download the required models to the ./[Baseline Folder]/pretrained/ directory.

Model Codebase Training Dataset Download
depthsplat-dl3dv-baseline-n50-256x448 DepthSplat RealEstate10K+DL3DV download
depthsplat-dl3dv-zpressor-n50-256x448 DepthSplat+ZPressor RealEstate10K+DL3DV download
mvsplat-re10k-baseline-n200-256x256 MVSplat RealEstate10K download
mvsplat-re10k-zpressor-n200-256x256 MVSplat+ZPressor RealEstate10K download
pixelsplat-re10k-baseline-n200-256x256 pixelSplat RealEstate10K download
pixelsplat-re10k-zpressor-n200-256x256 pixelSplat+ZPressor RealEstate10K download

Datasets

DL3DV-10K

First, download the DL3DV-10K dataset according to the official script, you can use this script to verify data integrity.

Then, we enter the depthsplat folder to process the dataset. We made modifications to the DepthSplat’s script for processing DL3DV-10K.

cd depthsplat
python src/scripts/convert_dl3dv_test.py --input_dir [ori_benchmark_path] --output_dir [benchmark_path]
python src/scripts/convert_dl3dv_train.py \
    --input_base_dir [ori_dataset_path] \ # such as datasets/DL3DV-10K-480
    --output_base_dir [dataset_path] \ # such as datasets/DL3DV-10K-480P
    --start_k 1 \
    --end_k 11 \
    --img_subdir images_8 # for 480P
python src/scripts/generate_dl3dv_index.py \
    --dataset_path [dataset_path] \
    --start_k 1 \
    --end_k 11

RealEstate10K / ACID

Please refer to here for acquiring preprocessed versions of the datasets following pixelSplat. If the link is broken or inaccessible, feel free to contact [email protected].

Some Notes

Expected folder structure of datasets:

├── datasets
│   ├── re10k
│   ├── ├── train
│   ├── ├── ├── 000000.torch
│   ├── ├── ├── ...
│   ├── ├── ├── index.json
│   ├── ├── test
│   ├── ├── ├── 000000.torch
│   ├── ├── ├── ...
│   ├── ├── ├── index.json
│   ├── dl3dv
│   ├── ├── train
│   ├── ├── ├── 000000.torch
│   ├── ├── ├── ...
│   ├── ├── ├── index.json
│   ├── ├── test
│   ├── ├── ├── 000000.torch
│   ├── ├── ├── ...
│   ├── ├── ├── index.json

You can use a symbolic link to point the datasets folder to the correct location when running specific codebases, for example:

ln -s ./datasets ./depthsplat/
ln -s ./datasets ./mvsplat/
ln -s ./datasets ./pixelsplat/

Running the Code

Each codebase operates differently; detailed instructions are provided in the README files within each code folder (DepthSplat / MVSplat / pixelSplat).

Citation

If you find our work useful for your research, please consider citing us:

@article{wang2025zpressor,
  title={ZPressor: Bottleneck-Aware Compression for Scalable Feed-Forward 3DGS},
  author={Wang, Weijie and Chen, Donny Y. and Zhang, Zeyu and Shi, Duochao and Liu, Akide and Zhuang, Bohan},
  journal={arXiv preprint arXiv:2505.23734},
  year={2025}
}

Contact

If you have any questions, please create an issue on this repository or contact at [email protected].

Acknowledgements

This project is developed with several fantastic repos: pixelSplat, MVSplat and DepthSplat. We thank the original authors for their excellent work.

About

[NeurIPS 2025] ZPressor: Bottleneck-Aware Compression for Scalable Feed-Forward 3DGS

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published