Skip to content

yxliu-TAMU/EquiDock-Dropout

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This is a modification of EquiDock with various dropout methods for the course project

#To reproduce the inference result in the project report:

  1. prepare DB5.5 dataset: Preprocessed DB5.5 dataset for this experiment can be downloaded from https://drive.google.com/drive/folders/1mr3J_Qfhzfvbz9ux32suF6Xw3OoVjoal?usp=sharing. Please move the cache folder into the main path
  2. run inference script: DropEdge: python -m src.inference -dropout 0 -drop_message None -drop_message_rate 0 -drop_connect DropEdge -drop_connect_rate 0.1 -iegmn_n_lays 8 -patience 100 -data db5

DropConnect: python -m src.inference -dropout 0 -drop_message None -drop_message_rate 0 -drop_connect DropConnect -drop_connect_rate 0.1 -iegmn_n_lays 4 -patience 100 -data db5

DropMessage: python -m src.inference -dropout 0 -drop_message DropMessage -drop_message_rate 0.05 -drop_connect None -drop_connect_rate 0 -iegmn_n_lays 8 -patience 100 -data db5

DropNode: python -m src.inference -dropout 0 -drop_message DropNode -drop_message_rate 0.25 -drop_connect None -drop_connect_rate 0 -iegmn_n_lays 4 -patience 100 -data db5

DropOut: python -m src.inference -dropout 0.05 -drop_message None -drop_message_rate 0 -drop_connect None -drop_connect_rate 0 -iegmn_n_lays 4 -patience 100 -data db5

Baseline: python -m src.inference -dropout 0 -drop_message None -drop_message_rate 0 -drop_connect None -drop_connect_rate 0 -iegmn_n_lays 8 -patience 100 -data db5

#To reproduce the uncertainty quantification result:

python uq.py

About

This is a course project for uncertainty quantification in protein docking

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages