Skip to content

Eval 结果

limiao edited this page Nov 26, 2017 · 44 revisions

Evaluation 结果

B4 = BLEU_4
C = CIDEr
M = METEOR
R = ROUGE_L

model(config) step B4 C M R notes_on_training_etc
ShowAndTell (train) 193009 0.410 1.142 0.349 0.599 原基线程序
ShowAndTell (train) 387562 0.417 1.198 0.350 0.604 原基线程序
ShowAndTell (train) 658160 0.416 1.200 0.351 0.603 原基线程序
ShowAndTell (lr=0.0005 finetune) 837155 0.442 1.292 0.361 0.620 原基线程序,从 420000 开始 finetune
ShowAndTell (lr=0.001 finetune) 840000 0.453 1.334 0.367 0.628 从 420000 开始 finetune
ShowAndTell (finetune with decay) 840000 0.472 1.396 0.374 0.639 从 420000 开始 finetune, 学习率接续训练时学习率继续 decay
ShowAndTell (from scratch) 420000 0.528 1.589 0.394 0.667 载入 Inception 后就开始按照原定学习率和 decay 训练整个网络
ShowAndTell (from scratch) 580411 0.530 1.601 0.395 0.668 载入 Inception 后就开始按照原定学习率和 decay 训练整个网络
ShowAndTell Data Augmentation 361163 0.413 1.191 0.351 0.603
ShowAndTell Advanced (Visual Attention, finetune with decay, Data Aug) 640713 0.5732 1.8031 0.4126 0.6896 从 105000 开始 finetune, 学习率接续训练时学习率继续 decay, initlr=1.0, decay=0.6
ShowAttendTell 415284 0.513 1.521 0.384 0.657 同scratch训练, word embedding为随机初始化常数
ShowAndTell Advanced (Visual Attention, finetune with decay) 580699 0.565 1.763 0.408 0.684 从 105000 开始 finetune, 学习率接续训练时学习率继续 decay, initlr=1.0, decay=0.6
ShowAndTell (finetune with decay) 581226 0.535 1.643 0.397 0.672 从 105000 开始 finetune, 学习率接续训练时学习率继续 decay, initlr=1.0, decay=0.6
ShowAndTell (finetune with decay) 581181 0.541 1.662 0.399 0.674 从 105000 开始 finetune, 学习率接续训练时学习率继续 decay, initlr=1.0, decay=0.9 every 2.0 epochs
ShowAndTell (finetune with decay) 580699 0.530 1.620 0.396 0.669 从 105000 开始 finetune, 学习率接续训练时学习率继续 decay, initlr=1.0, decay=0.9 every 2.0 epochs, lstm=128
ShowAndTell (finetune with decay) 600000 0.514 1.545 0.390 0.661 从 105000 开始 finetune, 学习率接续训练时学习率继续 decay, initlr=2.0, decay=0.5
ShowAndTell Advanced (Scheduled Sampling, finetune with decay) 581226 0.536 1.639 0.398 0.674 从 105000 开始 finetune, 学习率接续训练时学习率继续 decay, initlr=1.0, decay=0.6, linear sample rate (train 0 -> 0.25, finetune 0 -> 0.5)
Semantic-Attention 741392 0.5546 1.7216 0.4048 0.6805 先只训练attribute loss,从180973 开始,训练caption loss + attribute loss, 训练参数包括inception,initlr=4.6,decay=0.6,使得在一起训练时的学习率大概为1.0左右
Semantic-Attention Luong 740834 0.5555 1.7393 0.4059 0.6806 先只训练attribute loss,从180000 开始,训练caption loss + attribute loss, 训练参数包括inception,initlr=4.6,decay=0.6,使得在一起训练时的学习率大概为1.0左右
Semantic-Attention idf-weighted 740684 0.5556 1.7261 0.4053 0.6813 先只训练attribute loss,从200000 开始,训练caption loss + attribute loss, 训练参数包括inception,initlr=4.6,decay=0.6,使得在一起训练时的学习率大概为1.0左右
Clone this wiki locally