Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 15 additions & 0 deletions cleanrl/ppo.py
Original file line number Diff line number Diff line change
Expand Up @@ -241,6 +241,10 @@ def get_action_and_value(self, x, action=None):
# Optimizing the policy and value network
b_inds = np.arange(args.batch_size)
clipfracs = []

# tracking KL vals
old_kl_vals = []
kl_vals = []
for epoch in range(args.update_epochs):
np.random.shuffle(b_inds)
for start in range(0, args.batch_size, args.minibatch_size):
Expand All @@ -256,6 +260,8 @@ def get_action_and_value(self, x, action=None):
old_approx_kl = (-logratio).mean()
approx_kl = ((ratio - 1) - logratio).mean()
clipfracs += [((ratio - 1.0).abs() > args.clip_coef).float().mean().item()]
old_kl_vals.append(old_approx_kl)
kl_vals.append(approx_kl)

mb_advantages = b_advantages[mb_inds]
if args.norm_adv:
Expand Down Expand Up @@ -303,6 +309,15 @@ def get_action_and_value(self, x, action=None):
writer.add_scalar("losses/entropy", entropy_loss.item(), global_step)
writer.add_scalar("losses/old_approx_kl", old_approx_kl.item(), global_step)
writer.add_scalar("losses/approx_kl", approx_kl.item(), global_step)
# Aggregate KL stats across minibatches/epochs
if old_kl_vals:
_old_kl = torch.stack(old_kl_vals)
writer.add_scalar("losses/old_approx_kl_mean", _old_kl.mean().item(), global_step)
writer.add_scalar("losses/old_approx_kl_max", _old_kl.max().item(), global_step)
if kl_vals:
_kl = torch.stack(kl_vals)
writer.add_scalar("losses/approx_kl_mean", _kl.mean().item(), global_step)
writer.add_scalar("losses/approx_kl_max", _kl.max().item(), global_step)
writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step)
writer.add_scalar("losses/explained_variance", explained_var, global_step)
print("SPS:", int(global_step / (time.time() - start_time)))
Expand Down
15 changes: 15 additions & 0 deletions cleanrl/ppo_continuous_action.py
Original file line number Diff line number Diff line change
Expand Up @@ -256,6 +256,10 @@ def get_action_and_value(self, x, action=None):
# Optimizing the policy and value network
b_inds = np.arange(args.batch_size)
clipfracs = []

# tracking KL vals
old_kl_vals = []
kl_vals = []
for epoch in range(args.update_epochs):
np.random.shuffle(b_inds)
for start in range(0, args.batch_size, args.minibatch_size):
Expand All @@ -271,6 +275,8 @@ def get_action_and_value(self, x, action=None):
old_approx_kl = (-logratio).mean()
approx_kl = ((ratio - 1) - logratio).mean()
clipfracs += [((ratio - 1.0).abs() > args.clip_coef).float().mean().item()]
old_kl_vals.append(old_approx_kl)
kl_vals.append(approx_kl)

mb_advantages = b_advantages[mb_inds]
if args.norm_adv:
Expand Down Expand Up @@ -318,6 +324,15 @@ def get_action_and_value(self, x, action=None):
writer.add_scalar("losses/entropy", entropy_loss.item(), global_step)
writer.add_scalar("losses/old_approx_kl", old_approx_kl.item(), global_step)
writer.add_scalar("losses/approx_kl", approx_kl.item(), global_step)
# Aggregate KL stats across minibatches/epochs
if old_kl_vals:
_old_kl = torch.stack(old_kl_vals)
writer.add_scalar("losses/old_approx_kl_mean", _old_kl.mean().item(), global_step)
writer.add_scalar("losses/old_approx_kl_max", _old_kl.max().item(), global_step)
if kl_vals:
_kl = torch.stack(kl_vals)
writer.add_scalar("losses/approx_kl_mean", _kl.mean().item(), global_step)
writer.add_scalar("losses/approx_kl_max", _kl.max().item(), global_step)
writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step)
writer.add_scalar("losses/explained_variance", explained_var, global_step)
print("SPS:", int(global_step / (time.time() - start_time)))
Expand Down