-
Notifications
You must be signed in to change notification settings - Fork 2.2k
[release] feat: first release version on pypi v0.1.1 #1
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Collaborator
PeterSH6
commented
Oct 31, 2024
- Update verl doc url
- Update setup.py include torch, transformers and config yamls
ETOgaosion
referenced
this pull request
in ETOgaosion/verl
Mar 20, 2025
…lel Entropy (#1) * try to test linear cross attention and integrate it * add solid veRL unit tests * fix correctness * add @vermouth1992's VocabParallelEntropy optimization * add @vermouth1992's VocabParallelEntropy optimization * fix some bugs * add unit tests to kernels * add bytedance copyright * add vocab_parallel_entropy tests * format
ETOgaosion
referenced
this pull request
in ETOgaosion/verl
Mar 26, 2025
…lel Entropy (#1) * try to test linear cross attention and integrate it * add solid veRL unit tests * fix correctness * add @vermouth1992's VocabParallelEntropy optimization * add @vermouth1992's VocabParallelEntropy optimization * fix some bugs * add unit tests to kernels * add bytedance copyright * add vocab_parallel_entropy tests * format
eric-haibin-lin
added a commit
that referenced
this pull request
Apr 2, 2025
Reverts #706 temporarily as it breaks CI https://github.com/volcengine/verl/actions/runs/14220739954/attempts/2 ``` (TaskRunner pid=10086) 'Initial validation metrics: {}' (TaskRunner pid=10086) step:0 (TaskRunner pid=10086) list(reward_extra_infos_dict.keys())=[] (TaskRunner pid=10086) test_gen_batch meta info: {'eos_token_id': 32021, 'pad_token_id': 32014, 'recompute_log_prob': False, 'do_sample': False, 'validate': True} (TaskRunner pid=10086) validation generation end (TaskRunner pid=10086) [prompt] You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer (TaskRunner pid=10086) ### Instruction: (TaskRunner pid=10086) Training Progress: 33%|███▎ | 1/3 [02:39<05:18, 159.11s/it] (WorkerDict pid=18977) /root/miniconda3/lib/python3.10/site-packages/torch/autograd/graph.py:768: UserWarning: c10d::broadcast_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [repeated 7x across cluster] (WorkerDict pid=18977) return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [repeated 7x across cluster] (TaskRunner pid=10086) Training Progress: 33%|███▎ | 1/3 [04:51<09:43, 291.93s/it] (WorkerDict pid=18980) [rank4]:[E402 16:49:38.988158820 ProcessGroupNCCL.cpp:1515] [PG 97 Rank 0] Process group watchdog thread terminated with exception: CUDA error: an illegal memory access was encountered (WorkerDict pid=18980) CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. (WorkerDict pid=18980) For debugging consider passing CUDA_LAUNCH_BLOCKING=1 (WorkerDict pid=18980) Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. (WorkerDict pid=18980) (WorkerDict pid=18980) Exception raised from c10_cuda_check_implementation at ../c10/cuda/CUDAException.cpp:43 (most recent call first): (WorkerDict pid=18980) frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x96 (0x7fc6e4177f86 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libc10.so) (WorkerDict pid=18980) frame #1: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::string const&) + 0x64 (0x7fc6e4126d10 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libc10.so) (WorkerDict pid=18980) frame #2: c10::cuda::c10_cuda_check_implementation(int, char const*, char const*, int, bool) + 0x118 (0x7fc6e4594f08 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libc10_cuda.so) (WorkerDict pid=18980) frame #3: c10d::ProcessGroupNCCL::WorkNCCL::finishedGPUExecutionInternal() const + 0x56 (0x7fc6927d2a56 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame #4: c10d::ProcessGroupNCCL::WorkNCCL::isCompleted() + 0xa0 (0x7fc6927d7c70 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame #5: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1da (0x7fc6927de92a in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame #6: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7fc6927e0d6c in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame #7: <unknown function> + 0xdbbf4 (0x7fc9fd477bf4 in /root/miniconda3/bin/../lib/libstdc++.so.6) (WorkerDict pid=18980) frame #8: <unknown function> + 0x94ac3 (0x7fc9ff2f0ac3 in /usr/lib/x86_64-linux-gnu/libc.so.6) (WorkerDict pid=18980) frame #9: clone + 0x44 (0x7fc9ff381a04 in /usr/lib/x86_64-linux-gnu/libc.so.6) (WorkerDict pid=18980) (WorkerDict pid=18980) [2025-04-02 16:49:38,666 E 18980 20767] logging.cc:97: Unhandled exception: N3c1016DistBackendErrorE. what(): [PG 97 Rank 0] Process group watchdog thread terminated with exception: CUDA error: an illegal memory access was encountered (WorkerDict pid=18980) CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. (WorkerDict pid=18980) For debugging consider passing CUDA_LAUNCH_BLOCKING=1 (WorkerDict pid=18980) Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. (WorkerDict pid=18980) (WorkerDict pid=18980) Exception raised from c10_cuda_check_implementation at ../c10/cuda/CUDAException.cpp:43 (most recent call first): (WorkerDict pid=18980) frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x96 (0x7fc6e4177f86 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libc10.so) (WorkerDict pid=18980) frame #1: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::string const&) + 0x64 (0x7fc6e4126d10 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libc10.so) (WorkerDict pid=18980) frame #2: c10::cuda::c10_cuda_check_implementation(int, char const*, char const*, int, bool) + 0x118 (0x7fc6e4594f08 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libc10_cuda.so) (WorkerDict pid=18980) frame #3: c10d::ProcessGroupNCCL::WorkNCCL::finishedGPUExecutionInternal() const + 0x56 (0x7fc6927d2a56 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame #4: c10d::ProcessGroupNCCL::WorkNCCL::isCompleted() + 0xa0 (0x7fc6927d7c70 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame #5: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1da (0x7fc6927de92a in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame #6: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7fc6927e0d6c in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame #7: <unknown function> + 0xdbbf4 (0x7fc9fd477bf4 in /root/miniconda3/bin/../lib/libstdc++.so.6) (WorkerDict pid=18980) frame #8: <unknown function> + 0x94ac3 (0x7fc9ff2f0ac3 in /usr/lib/x86_64-linux-gnu/libc.so.6) (WorkerDict pid=18980) frame #9: clone + 0x44 (0x7fc9ff381a04 in /usr/lib/x86_64-linux-gnu/libc.so.6) (WorkerDict pid=18980) (WorkerDict pid=18980) Exception raised from ncclCommWatchdog at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:1521 (most recent call first): (WorkerDict pid=18980) frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x96 (0x7fc6e4177f86 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libc10.so) (WorkerDict pid=18980) frame #1: <unknown function> + 0xe1a5e4 (0x7fc6924625e4 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame #2: <unknown function> + 0xdbbf4 (0x7fc9fd477bf4 in /root/miniconda3/bin/../lib/libstdc++.so.6) (WorkerDict pid=18980) frame #3: <unknown function> + 0x94ac3 (0x7fc9ff2f0ac3 in /usr/lib/x86_64-linux-gnu/libc.so.6) (WorkerDict pid=18980) frame #4: clone + 0x44 (0x7fc9ff381a04 in /usr/lib/x86_64-linux-gnu/libc.so.6) (WorkerDict pid=18980) (WorkerDict pid=18980) [2025-04-02 16:49:38,675 E 18980 20767] logging.cc:104: Stack trace: (WorkerDict pid=18980) /root/miniconda3/lib/python3.10/site-packages/ray/_raylet.so(+0xfe543a) [0x7fc9fe5a143a] ray::operator<<() (WorkerDict pid=18980) /root/miniconda3/lib/python3.10/site-packages/ray/_raylet.so(+0xfe7b78) [0x7fc9fe5a3b78] ray::TerminateHandler() (WorkerDict pid=18980) /root/miniconda3/bin/../lib/libstdc++.so.6(+0xb135a) [0x7fc9fd44d35a] __cxxabiv1::__terminate() (WorkerDict pid=18980) /root/miniconda3/bin/../lib/libstdc++.so.6(+0xb13c5) [0x7fc9fd44d3c5] (WorkerDict pid=18980) /root/miniconda3/bin/../lib/libstdc++.so.6(+0xb134f) [0x7fc9fd44d34f] (WorkerDict pid=18980) /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so(+0xe1a695) [0x7fc692462695] c10d::ProcessGroupNCCL::ncclCommWatchdog() (WorkerDict pid=18980) /root/miniconda3/bin/../lib/libstdc++.so.6(+0xdbbf4) [0x7fc9fd477bf4] execute_native_thread_routine (WorkerDict pid=18980) /usr/lib/x86_64-linux-gnu/libc.so.6(+0x94ac3) [0x7fc9ff2f0ac3] (WorkerDict pid=18980) /usr/lib/x86_64-linux-gnu/libc.so.6(clone+0x44) [0x7fc9ff381a04] __clone (WorkerDict pid=18980) (WorkerDict pid=18980) *** SIGABRT received at time=1743612578 on cpu 118 *** (WorkerDict pid=18980) PC: @ 0x7fc9ff2f29fc (unknown) pthread_kill (WorkerDict pid=18980) @ 0x7fc9ff29e520 (unknown) (unknown) (WorkerDict pid=18980) [2025-04-02 16:49:38,675 E 18980 20767] logging.cc:361: *** SIGABRT received at time=1743612578 on cpu 118 *** (WorkerDict pid=18980) [2025-04-02 16:49:38,675 E 18980 20767] logging.cc:361: PC: @ 0x7fc9ff2f29fc (unknown) pthread_kill (WorkerDict pid=18980) [2025-04-02 16:49:38,675 E 18980 20767] logging.cc:361: @ 0x7fc9ff29e520 (unknown) (unknown) (WorkerDict pid=18980) Fatal Python error: Aborted (WorkerDict pid=18980) (WorkerDict pid=18980) (WorkerDict pid=18980) Extension modules: msgpack._cmsgpack, google._upb._message, psutil._psutil_linux, psutil._psutil_posix, setproctitle, yaml._yaml, _brotli, zstandard.backend_c, uvloop.loop, ray._raylet, numpy.core._multiarray_umath, numpy.core._multiarray_tests, numpy.linalg._umath_linalg, numpy.fft._pocketfft_internal, numpy.random._common, numpy.random.bit_generator, numpy.random._bounded_integers, numpy.random._mt19937, numpy.random.mtrand, numpy.random._philox, numpy.random._pcg64, numpy.random._sfc64, numpy.random._generator, pyarrow.lib, pandas._libs.tslibs.ccalendar, pandas._libs.tslibs.np_datetime, pandas._libs.tslibs.dtypes, pandas._libs.tslibs.base, pandas._libs.tslibs.nattype, pandas._libs.tslibs.timezones, pandas._libs.tslibs.fields, pandas._libs.tslibs.timedeltas, pandas._libs.tslibs.tzconversion, pandas._libs.tslibs.timestamps, pandas._libs.properties, pandas._libs.tslibs.offsets, pandas._libs.tslibs.strptime, pandas._libs.tslibs.parsing, pandas._libs.tslibs.conversion, pandas._libs.tslibs.period, pandas._libs.tslibs.vectorized, pandas._libs.ops_dispatch, pandas._libs.missing, pandas._libs.hashtable, pandas._libs.algos, pandas._libs.interval, pandas._libs.lib, pyarrow._compute, pandas._libs.ops, pandas._libs.hashing, pandas._libs.arrays, pandas._libs.tslib, pandas._libs.sparse, pandas._libs.internals, pandas._libs.indexing, pandas._libs.index, pandas._libs.writers, pandas._libs.join, pandas._libs.window.aggregations, pandas._libs.window.indexers, pandas._libs.reshape, pandas._libs.groupby, pandas._libs.json, pandas._libs.parsers, pandas._libs.testing, torch._C, torch._C._fft, torch._C._linalg, torch._C._nested, torch._C._nn, torch._C._sparse, torch._C._special, markupsafe._speedups, PIL._imaging, msgspec._core, sentencepiece._sentencepiece, PIL._imagingft, regex._regex, multidict._multidict, yarl._helpers_c, yarl._quoting_c, aiohttp._helpers, aiohttp._http_writer, aiohttp._http_parser, aiohttp._websocket, frozenlist._frozenlist, pyarrow._json, zmq.backend.cython.context, zmq.backend.cython.message, zmq.backend.cython.socket, zmq.backend.cython._device, zmq.backend.cython._poll, zmq.backend.cython._proxy_steerable, zmq.backend.cython._version, zmq.backend.cython.error, zmq.backend.cython.utils (total: 96) Error executing job with overrides: ['algorithm.adv_estimator=gae', 'data.train_files=/github/home/data/gsm8k/train.parquet', 'data.val_files=/github/home/data/gsm8k/test.parquet', 'data.train_batch_size=1024', 'data.max_prompt_length=512', 'data.max_response_length=512', 'actor_rollout_ref.model.path=/github/home/models/deepseek-ai/deepseek-coder-1.3b-instruct', 'actor_rollout_ref.actor.optim.lr=2e-6', 'actor_rollout_ref.actor.ppo_mini_batch_size=256', 'actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=4', 'actor_rollout_ref.actor.megatron.pipeline_model_parallel_size=2', 'actor_rollout_ref.actor.megatron.virtual_pipeline_model_parallel_size=2', 'actor_rollout_ref.actor.megatron.tensor_model_parallel_size=4', 'actor_rollout_ref.actor.use_kl_loss=False', 'actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=8', 'actor_rollout_ref.rollout.tensor_model_parallel_size=2', 'actor_rollout_ref.rollout.name=vllm', 'actor_rollout_ref.rollout.gpu_memory_utilization=0.5', 'actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=16', 'actor_rollout_ref.ref.megatron.pipeline_model_parallel_size=2', 'actor_rollout_ref.ref.megatron.virtual_pipeline_model_parallel_size=2', 'actor_rollout_ref.ref.megatron.tensor_model_parallel_size=2', 'critic.optim.lr=2e-5', 'critic.model.path=/github/home/models/deepseek-ai/deepseek-coder-1.3b-instruct', 'critic.model.enable_gradient_checkpointing=False', 'critic.ppo_micro_batch_size_per_gpu=4', 'critic.megatron.pipeline_model_parallel_size=2', 'critic.megatron.virtual_pipeline_model_parallel_size=2', 'critic.megatron.tensor_model_parallel_size=2', 'algorithm.use_kl_in_reward=True', 'algorithm.kl_penalty=kl', 'algorithm.kl_ctrl.kl_coef=0.001', 'trainer.critic_warmup=0', 'trainer.logger=[console]', 'trainer.project_name=verl_megatron_gsm8k_examples', 'trainer.experiment_name=deepseek_llm_1b3_function_rm', 'trainer.n_gpus_per_node=8', 'trainer.nnodes=1', 'trainer.save_freq=-1', 'trainer.test_freq=1', 'trainer.total_epochs=15', 'trainer.total_training_steps=3'] (TaskRunner pid=10086) Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells the remainder at the farmers' market daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers' market? Let's think step by step and output the final answer after "####". (TaskRunner pid=10086) ### Response: (TaskRunner pid=10086) (TaskRunner pid=10086) [response] I'm sorry, but as an AI programming assistant, I'm specialized in answering questions related to computer science. I'm not equipped to provide answers to questions about economics or business calculations. I recommend using a calculator or a business-oriented tool for this type of question. (TaskRunner pid=10086) (TaskRunner pid=10086) [ground_truth] 18 (TaskRunner pid=10086) [score] 0.0 (TaskRunner pid=10086) step:1 - global_seqlen/min:[486](https://github.com/volcengine/verl/actions/runs/14220739954/job/39861249946#step:6:487)35.000 - global_seqlen/max:51694.000 - global_seqlen/minmax_diff:3059.000 - global_seqlen/balanced_min:49636.000 - global_seqlen/balanced_max:49637.000 - global_seqlen/mean:49636.125 - actor/reward_kl_penalty:0.000 - actor/reward_kl_penalty_coeff:0.001 - critic/vf_loss:0.015 - critic/vf_clipfrac:0.001 - critic/vpred_mean:0.007 - perf/mfu/critic:0.105 - actor/entropy_loss:0.550 - actor/pg_loss:-0.000 - actor/pg_clipfrac:0.018 - actor/ppo_kl:0.000 - actor/pg_clipfrac_lower:0.000 - perf/mfu/actor:0.106 - critic/score/mean:0.000 - critic/score/max:0.000 - critic/score/min:0.000 - critic/rewards/mean:0.000 - critic/rewards/max:0.000 - critic/rewards/min:0.000 - critic/advantages/mean:-0.000 - critic/advantages/max:4.994 - critic/advantages/min:-5.666 - critic/returns/mean:-0.000 - critic/returns/max:0.000 - critic/returns/min:-0.000 - critic/values/mean:-0.164 - critic/values/max:0.785 - critic/values/min:-1.000 - critic/vf_explained_var:-2803.085 - response_length/mean:239.112 - response_length/max:512.000 - response_length/min:11.000 - response_length/clip_ratio:0.029 - prompt_length/mean:148.670 - prompt_length/max:275.000 - prompt_length/min:106.000 - prompt_length/clip_ratio:0.000 - timing_s/gen:18.608 - timing_s/old_log_prob:15.249 - timing_s/ref:14.[488](https://github.com/volcengine/verl/actions/runs/14220739954/job/39861249946#step:6:489) - timing_s/values:16.315 - timing_s/adv:0.264 - timing_s/update_critic:33.651 - timing_s/update_actor:33.472 - timing_s/testing:25.497 - timing_s/step:157.587 - timing_per_token_ms/adv:0.001 - timing_per_token_ms/gen:0.076 - timing_per_token_ms/update_actor:0.084 - timing_per_token_ms/values:0.041 - timing_per_token_ms/update_critic:0.085 - timing_per_token_ms/ref:0.036 - perf/total_num_tokens:397089.000 - perf/time_per_step:157.587 - perf/throughput:314.976 (TaskRunner pid=10086) list(reward_extra_infos_dict.keys())=[] (TaskRunner pid=10086) test_gen_batch meta info: {'eos_token_id': 32021, 'pad_token_id': 32014, 'recompute_log_prob': False, 'do_sample': False, 'validate': True} (WorkerDict pid=18980) WARNING 04-02 16:49:38 model_runner_base.py:143] Failed to pickle inputs of failed execution: CUDA error: an illegal memory access was encountered (WorkerDict pid=18980) WARNING 04-02 16:49:38 model_runner_base.py:143] CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. (WorkerDict pid=18980) WARNING 04-02 16:49:38 model_runner_base.py:143] For debugging consider passing CUDA_LAUNCH_BLOCKING=1 (WorkerDict pid=18980) WARNING 04-02 16:49:38 model_runner_base.py:143] Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. (WorkerDict pid=18980) WARNING 04-02 16:49:38 model_runner_base.py:143] Traceback (most recent call last): File "/data00/tiger/huggingface/verl/verl/verl/trainer/main_ppo.py", line 54, in main run_ppo(config) File "/data00/tiger/huggingface/verl/verl/verl/trainer/main_ppo.py", line 72, in run_ppo ray.get(runner.run.remote(config)) File "/root/miniconda3/lib/python3.10/site-packages/ray/_private/auto_init_hook.py", line 21, in auto_init_wrapper return fn(*args, **kwargs) File "/root/miniconda3/lib/python3.10/site-packages/ray/_private/client_mode_hook.py", line 103, in wrapper return func(*args, **kwargs) File "/root/miniconda3/lib/python3.10/site-packages/ray/_private/worker.py", line 2667, in get values, debugger_breakpoint = worker.get_objects(object_refs, timeout=timeout) File "/root/miniconda3/lib/python3.10/site-packages/ray/_private/worker.py", line 864, in get_objects raise value.as_instanceof_cause() ray.exceptions.RayTaskError(RuntimeError): ray::TaskRunner.run() (pid=10086, ip=172.20.0.2, actor_id=11bc451866f5759f3a7f540[501](https://github.com/volcengine/verl/actions/runs/14220739954/job/39861249946#step:6:502)000000, repr=<main_ppo.TaskRunner object at 0x7fd00c61a110>) File "/data00/tiger/huggingface/verl/verl/verl/trainer/main_ppo.py", line 184, in run trainer.fit() File "/data00/tiger/huggingface/verl/verl/verl/trainer/ppo/ray_trainer.py", line 950, in fit val_metrics: dict = self._validate() File "/data00/tiger/huggingface/verl/verl/verl/trainer/ppo/ray_trainer.py", line 545, in _validate test_output_gen_batch_padded = self.actor_rollout_wg.generate_sequences(test_gen_batch_padded) File "/data00/tiger/huggingface/verl/verl/verl/single_controller/ray/base.py", line 42, in func output = ray.get(output) ray.exceptions.RayTaskError(RuntimeError): ray::WorkerDict.actor_rollout_generate_sequences() (pid=18980, ip=172.20.0.2, actor_id=4f21075809bd462a5907ebea01000000, repr=<verl.single_controller.ray.base.WorkerDict object at 0x7fc62ae1ce20>) File "/root/miniconda3/lib/python3.10/site-packages/vllm/worker/model_runner.py", line 1708, in execute_model output: SamplerOutput = self.model.sample( File "/root/miniconda3/lib/python3.10/site-packages/vllm/model_executor/models/llama.py", line 571, in sample next_tokens = self.sampler(logits, sampling_metadata) File "/root/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/root/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl return forward_call(*args, **kwargs) File "/root/miniconda3/lib/python3.10/site-packages/vllm/model_executor/layers/sampler.py", line 231, in forward self._init_sampling_tensors(logits, sampling_metadata) File "/root/miniconda3/lib/python3.10/site-packages/vllm/model_executor/layers/sampler.py", line 195, in _init_sampling_tensors do_min_p) = SamplingTensors.from_sampling_metadata( File "/root/miniconda3/lib/python3.10/site-packages/vllm/model_executor/sampling_metadata.py", line 471, in from_sampling_metadata sampling_tensors = SamplingTensors.from_lists( File "/root/miniconda3/lib/python3.10/site-packages/vllm/model_executor/sampling_metadata.py", line 529, in from_lists temperatures_t = torch.tensor( RuntimeError: CUDA error: an illegal memory access was encountered CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1 Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. ```
yyu6969
pushed a commit
to yyu6969/verl
that referenced
this pull request
Apr 15, 2025
yuchenwang3
pushed a commit
to yuchenwang3/verl
that referenced
this pull request
Apr 25, 2025
* [release] update verl doc url and update version and setup * fix init with only fsdp and update setup for pypi * update version
yuchenwang3
pushed a commit
to yuchenwang3/verl
that referenced
this pull request
Apr 25, 2025
Reverts volcengine#706 temporarily as it breaks CI https://github.com/volcengine/verl/actions/runs/14220739954/attempts/2 ``` (TaskRunner pid=10086) 'Initial validation metrics: {}' (TaskRunner pid=10086) step:0 (TaskRunner pid=10086) list(reward_extra_infos_dict.keys())=[] (TaskRunner pid=10086) test_gen_batch meta info: {'eos_token_id': 32021, 'pad_token_id': 32014, 'recompute_log_prob': False, 'do_sample': False, 'validate': True} (TaskRunner pid=10086) validation generation end (TaskRunner pid=10086) [prompt] You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer (TaskRunner pid=10086) ### Instruction: (TaskRunner pid=10086) Training Progress: 33%|███▎ | 1/3 [02:39<05:18, 159.11s/it] (WorkerDict pid=18977) /root/miniconda3/lib/python3.10/site-packages/torch/autograd/graph.py:768: UserWarning: c10d::broadcast_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [repeated 7x across cluster] (WorkerDict pid=18977) return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [repeated 7x across cluster] (TaskRunner pid=10086) Training Progress: 33%|███▎ | 1/3 [04:51<09:43, 291.93s/it] (WorkerDict pid=18980) [rank4]:[E402 16:49:38.988158820 ProcessGroupNCCL.cpp:1515] [PG 97 Rank 0] Process group watchdog thread terminated with exception: CUDA error: an illegal memory access was encountered (WorkerDict pid=18980) CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. (WorkerDict pid=18980) For debugging consider passing CUDA_LAUNCH_BLOCKING=1 (WorkerDict pid=18980) Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. (WorkerDict pid=18980) (WorkerDict pid=18980) Exception raised from c10_cuda_check_implementation at ../c10/cuda/CUDAException.cpp:43 (most recent call first): (WorkerDict pid=18980) frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x96 (0x7fc6e4177f86 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libc10.so) (WorkerDict pid=18980) frame volcengine#1: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::string const&) + 0x64 (0x7fc6e4126d10 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libc10.so) (WorkerDict pid=18980) frame volcengine#2: c10::cuda::c10_cuda_check_implementation(int, char const*, char const*, int, bool) + 0x118 (0x7fc6e4594f08 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libc10_cuda.so) (WorkerDict pid=18980) frame volcengine#3: c10d::ProcessGroupNCCL::WorkNCCL::finishedGPUExecutionInternal() const + 0x56 (0x7fc6927d2a56 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame volcengine#4: c10d::ProcessGroupNCCL::WorkNCCL::isCompleted() + 0xa0 (0x7fc6927d7c70 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame volcengine#5: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1da (0x7fc6927de92a in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame volcengine#6: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7fc6927e0d6c in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame volcengine#7: <unknown function> + 0xdbbf4 (0x7fc9fd477bf4 in /root/miniconda3/bin/../lib/libstdc++.so.6) (WorkerDict pid=18980) frame volcengine#8: <unknown function> + 0x94ac3 (0x7fc9ff2f0ac3 in /usr/lib/x86_64-linux-gnu/libc.so.6) (WorkerDict pid=18980) frame volcengine#9: clone + 0x44 (0x7fc9ff381a04 in /usr/lib/x86_64-linux-gnu/libc.so.6) (WorkerDict pid=18980) (WorkerDict pid=18980) [2025-04-02 16:49:38,666 E 18980 20767] logging.cc:97: Unhandled exception: N3c1016DistBackendErrorE. what(): [PG 97 Rank 0] Process group watchdog thread terminated with exception: CUDA error: an illegal memory access was encountered (WorkerDict pid=18980) CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. (WorkerDict pid=18980) For debugging consider passing CUDA_LAUNCH_BLOCKING=1 (WorkerDict pid=18980) Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. (WorkerDict pid=18980) (WorkerDict pid=18980) Exception raised from c10_cuda_check_implementation at ../c10/cuda/CUDAException.cpp:43 (most recent call first): (WorkerDict pid=18980) frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x96 (0x7fc6e4177f86 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libc10.so) (WorkerDict pid=18980) frame volcengine#1: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::string const&) + 0x64 (0x7fc6e4126d10 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libc10.so) (WorkerDict pid=18980) frame volcengine#2: c10::cuda::c10_cuda_check_implementation(int, char const*, char const*, int, bool) + 0x118 (0x7fc6e4594f08 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libc10_cuda.so) (WorkerDict pid=18980) frame volcengine#3: c10d::ProcessGroupNCCL::WorkNCCL::finishedGPUExecutionInternal() const + 0x56 (0x7fc6927d2a56 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame volcengine#4: c10d::ProcessGroupNCCL::WorkNCCL::isCompleted() + 0xa0 (0x7fc6927d7c70 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame volcengine#5: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1da (0x7fc6927de92a in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame volcengine#6: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7fc6927e0d6c in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame volcengine#7: <unknown function> + 0xdbbf4 (0x7fc9fd477bf4 in /root/miniconda3/bin/../lib/libstdc++.so.6) (WorkerDict pid=18980) frame volcengine#8: <unknown function> + 0x94ac3 (0x7fc9ff2f0ac3 in /usr/lib/x86_64-linux-gnu/libc.so.6) (WorkerDict pid=18980) frame volcengine#9: clone + 0x44 (0x7fc9ff381a04 in /usr/lib/x86_64-linux-gnu/libc.so.6) (WorkerDict pid=18980) (WorkerDict pid=18980) Exception raised from ncclCommWatchdog at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:1521 (most recent call first): (WorkerDict pid=18980) frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x96 (0x7fc6e4177f86 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libc10.so) (WorkerDict pid=18980) frame volcengine#1: <unknown function> + 0xe1a5e4 (0x7fc6924625e4 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame volcengine#2: <unknown function> + 0xdbbf4 (0x7fc9fd477bf4 in /root/miniconda3/bin/../lib/libstdc++.so.6) (WorkerDict pid=18980) frame volcengine#3: <unknown function> + 0x94ac3 (0x7fc9ff2f0ac3 in /usr/lib/x86_64-linux-gnu/libc.so.6) (WorkerDict pid=18980) frame volcengine#4: clone + 0x44 (0x7fc9ff381a04 in /usr/lib/x86_64-linux-gnu/libc.so.6) (WorkerDict pid=18980) (WorkerDict pid=18980) [2025-04-02 16:49:38,675 E 18980 20767] logging.cc:104: Stack trace: (WorkerDict pid=18980) /root/miniconda3/lib/python3.10/site-packages/ray/_raylet.so(+0xfe543a) [0x7fc9fe5a143a] ray::operator<<() (WorkerDict pid=18980) /root/miniconda3/lib/python3.10/site-packages/ray/_raylet.so(+0xfe7b78) [0x7fc9fe5a3b78] ray::TerminateHandler() (WorkerDict pid=18980) /root/miniconda3/bin/../lib/libstdc++.so.6(+0xb135a) [0x7fc9fd44d35a] __cxxabiv1::__terminate() (WorkerDict pid=18980) /root/miniconda3/bin/../lib/libstdc++.so.6(+0xb13c5) [0x7fc9fd44d3c5] (WorkerDict pid=18980) /root/miniconda3/bin/../lib/libstdc++.so.6(+0xb134f) [0x7fc9fd44d34f] (WorkerDict pid=18980) /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so(+0xe1a695) [0x7fc692462695] c10d::ProcessGroupNCCL::ncclCommWatchdog() (WorkerDict pid=18980) /root/miniconda3/bin/../lib/libstdc++.so.6(+0xdbbf4) [0x7fc9fd477bf4] execute_native_thread_routine (WorkerDict pid=18980) /usr/lib/x86_64-linux-gnu/libc.so.6(+0x94ac3) [0x7fc9ff2f0ac3] (WorkerDict pid=18980) /usr/lib/x86_64-linux-gnu/libc.so.6(clone+0x44) [0x7fc9ff381a04] __clone (WorkerDict pid=18980) (WorkerDict pid=18980) *** SIGABRT received at time=1743612578 on cpu 118 *** (WorkerDict pid=18980) PC: @ 0x7fc9ff2f29fc (unknown) pthread_kill (WorkerDict pid=18980) @ 0x7fc9ff29e520 (unknown) (unknown) (WorkerDict pid=18980) [2025-04-02 16:49:38,675 E 18980 20767] logging.cc:361: *** SIGABRT received at time=1743612578 on cpu 118 *** (WorkerDict pid=18980) [2025-04-02 16:49:38,675 E 18980 20767] logging.cc:361: PC: @ 0x7fc9ff2f29fc (unknown) pthread_kill (WorkerDict pid=18980) [2025-04-02 16:49:38,675 E 18980 20767] logging.cc:361: @ 0x7fc9ff29e520 (unknown) (unknown) (WorkerDict pid=18980) Fatal Python error: Aborted (WorkerDict pid=18980) (WorkerDict pid=18980) (WorkerDict pid=18980) Extension modules: msgpack._cmsgpack, google._upb._message, psutil._psutil_linux, psutil._psutil_posix, setproctitle, yaml._yaml, _brotli, zstandard.backend_c, uvloop.loop, ray._raylet, numpy.core._multiarray_umath, numpy.core._multiarray_tests, numpy.linalg._umath_linalg, numpy.fft._pocketfft_internal, numpy.random._common, numpy.random.bit_generator, numpy.random._bounded_integers, numpy.random._mt19937, numpy.random.mtrand, numpy.random._philox, numpy.random._pcg64, numpy.random._sfc64, numpy.random._generator, pyarrow.lib, pandas._libs.tslibs.ccalendar, pandas._libs.tslibs.np_datetime, pandas._libs.tslibs.dtypes, pandas._libs.tslibs.base, pandas._libs.tslibs.nattype, pandas._libs.tslibs.timezones, pandas._libs.tslibs.fields, pandas._libs.tslibs.timedeltas, pandas._libs.tslibs.tzconversion, pandas._libs.tslibs.timestamps, pandas._libs.properties, pandas._libs.tslibs.offsets, pandas._libs.tslibs.strptime, pandas._libs.tslibs.parsing, pandas._libs.tslibs.conversion, pandas._libs.tslibs.period, pandas._libs.tslibs.vectorized, pandas._libs.ops_dispatch, pandas._libs.missing, pandas._libs.hashtable, pandas._libs.algos, pandas._libs.interval, pandas._libs.lib, pyarrow._compute, pandas._libs.ops, pandas._libs.hashing, pandas._libs.arrays, pandas._libs.tslib, pandas._libs.sparse, pandas._libs.internals, pandas._libs.indexing, pandas._libs.index, pandas._libs.writers, pandas._libs.join, pandas._libs.window.aggregations, pandas._libs.window.indexers, pandas._libs.reshape, pandas._libs.groupby, pandas._libs.json, pandas._libs.parsers, pandas._libs.testing, torch._C, torch._C._fft, torch._C._linalg, torch._C._nested, torch._C._nn, torch._C._sparse, torch._C._special, markupsafe._speedups, PIL._imaging, msgspec._core, sentencepiece._sentencepiece, PIL._imagingft, regex._regex, multidict._multidict, yarl._helpers_c, yarl._quoting_c, aiohttp._helpers, aiohttp._http_writer, aiohttp._http_parser, aiohttp._websocket, frozenlist._frozenlist, pyarrow._json, zmq.backend.cython.context, zmq.backend.cython.message, zmq.backend.cython.socket, zmq.backend.cython._device, zmq.backend.cython._poll, zmq.backend.cython._proxy_steerable, zmq.backend.cython._version, zmq.backend.cython.error, zmq.backend.cython.utils (total: 96) Error executing job with overrides: ['algorithm.adv_estimator=gae', 'data.train_files=/github/home/data/gsm8k/train.parquet', 'data.val_files=/github/home/data/gsm8k/test.parquet', 'data.train_batch_size=1024', 'data.max_prompt_length=512', 'data.max_response_length=512', 'actor_rollout_ref.model.path=/github/home/models/deepseek-ai/deepseek-coder-1.3b-instruct', 'actor_rollout_ref.actor.optim.lr=2e-6', 'actor_rollout_ref.actor.ppo_mini_batch_size=256', 'actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=4', 'actor_rollout_ref.actor.megatron.pipeline_model_parallel_size=2', 'actor_rollout_ref.actor.megatron.virtual_pipeline_model_parallel_size=2', 'actor_rollout_ref.actor.megatron.tensor_model_parallel_size=4', 'actor_rollout_ref.actor.use_kl_loss=False', 'actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=8', 'actor_rollout_ref.rollout.tensor_model_parallel_size=2', 'actor_rollout_ref.rollout.name=vllm', 'actor_rollout_ref.rollout.gpu_memory_utilization=0.5', 'actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=16', 'actor_rollout_ref.ref.megatron.pipeline_model_parallel_size=2', 'actor_rollout_ref.ref.megatron.virtual_pipeline_model_parallel_size=2', 'actor_rollout_ref.ref.megatron.tensor_model_parallel_size=2', 'critic.optim.lr=2e-5', 'critic.model.path=/github/home/models/deepseek-ai/deepseek-coder-1.3b-instruct', 'critic.model.enable_gradient_checkpointing=False', 'critic.ppo_micro_batch_size_per_gpu=4', 'critic.megatron.pipeline_model_parallel_size=2', 'critic.megatron.virtual_pipeline_model_parallel_size=2', 'critic.megatron.tensor_model_parallel_size=2', 'algorithm.use_kl_in_reward=True', 'algorithm.kl_penalty=kl', 'algorithm.kl_ctrl.kl_coef=0.001', 'trainer.critic_warmup=0', 'trainer.logger=[console]', 'trainer.project_name=verl_megatron_gsm8k_examples', 'trainer.experiment_name=deepseek_llm_1b3_function_rm', 'trainer.n_gpus_per_node=8', 'trainer.nnodes=1', 'trainer.save_freq=-1', 'trainer.test_freq=1', 'trainer.total_epochs=15', 'trainer.total_training_steps=3'] (TaskRunner pid=10086) Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells the remainder at the farmers' market daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers' market? Let's think step by step and output the final answer after "####". (TaskRunner pid=10086) ### Response: (TaskRunner pid=10086) (TaskRunner pid=10086) [response] I'm sorry, but as an AI programming assistant, I'm specialized in answering questions related to computer science. I'm not equipped to provide answers to questions about economics or business calculations. I recommend using a calculator or a business-oriented tool for this type of question. (TaskRunner pid=10086) (TaskRunner pid=10086) [ground_truth] 18 (TaskRunner pid=10086) [score] 0.0 (TaskRunner pid=10086) step:1 - global_seqlen/min:[486](https://github.com/volcengine/verl/actions/runs/14220739954/job/39861249946#step:6:487)35.000 - global_seqlen/max:51694.000 - global_seqlen/minmax_diff:3059.000 - global_seqlen/balanced_min:49636.000 - global_seqlen/balanced_max:49637.000 - global_seqlen/mean:49636.125 - actor/reward_kl_penalty:0.000 - actor/reward_kl_penalty_coeff:0.001 - critic/vf_loss:0.015 - critic/vf_clipfrac:0.001 - critic/vpred_mean:0.007 - perf/mfu/critic:0.105 - actor/entropy_loss:0.550 - actor/pg_loss:-0.000 - actor/pg_clipfrac:0.018 - actor/ppo_kl:0.000 - actor/pg_clipfrac_lower:0.000 - perf/mfu/actor:0.106 - critic/score/mean:0.000 - critic/score/max:0.000 - critic/score/min:0.000 - critic/rewards/mean:0.000 - critic/rewards/max:0.000 - critic/rewards/min:0.000 - critic/advantages/mean:-0.000 - critic/advantages/max:4.994 - critic/advantages/min:-5.666 - critic/returns/mean:-0.000 - critic/returns/max:0.000 - critic/returns/min:-0.000 - critic/values/mean:-0.164 - critic/values/max:0.785 - critic/values/min:-1.000 - critic/vf_explained_var:-2803.085 - response_length/mean:239.112 - response_length/max:512.000 - response_length/min:11.000 - response_length/clip_ratio:0.029 - prompt_length/mean:148.670 - prompt_length/max:275.000 - prompt_length/min:106.000 - prompt_length/clip_ratio:0.000 - timing_s/gen:18.608 - timing_s/old_log_prob:15.249 - timing_s/ref:14.[488](https://github.com/volcengine/verl/actions/runs/14220739954/job/39861249946#step:6:489) - timing_s/values:16.315 - timing_s/adv:0.264 - timing_s/update_critic:33.651 - timing_s/update_actor:33.472 - timing_s/testing:25.497 - timing_s/step:157.587 - timing_per_token_ms/adv:0.001 - timing_per_token_ms/gen:0.076 - timing_per_token_ms/update_actor:0.084 - timing_per_token_ms/values:0.041 - timing_per_token_ms/update_critic:0.085 - timing_per_token_ms/ref:0.036 - perf/total_num_tokens:397089.000 - perf/time_per_step:157.587 - perf/throughput:314.976 (TaskRunner pid=10086) list(reward_extra_infos_dict.keys())=[] (TaskRunner pid=10086) test_gen_batch meta info: {'eos_token_id': 32021, 'pad_token_id': 32014, 'recompute_log_prob': False, 'do_sample': False, 'validate': True} (WorkerDict pid=18980) WARNING 04-02 16:49:38 model_runner_base.py:143] Failed to pickle inputs of failed execution: CUDA error: an illegal memory access was encountered (WorkerDict pid=18980) WARNING 04-02 16:49:38 model_runner_base.py:143] CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. (WorkerDict pid=18980) WARNING 04-02 16:49:38 model_runner_base.py:143] For debugging consider passing CUDA_LAUNCH_BLOCKING=1 (WorkerDict pid=18980) WARNING 04-02 16:49:38 model_runner_base.py:143] Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. (WorkerDict pid=18980) WARNING 04-02 16:49:38 model_runner_base.py:143] Traceback (most recent call last): File "/data00/tiger/huggingface/verl/verl/verl/trainer/main_ppo.py", line 54, in main run_ppo(config) File "/data00/tiger/huggingface/verl/verl/verl/trainer/main_ppo.py", line 72, in run_ppo ray.get(runner.run.remote(config)) File "/root/miniconda3/lib/python3.10/site-packages/ray/_private/auto_init_hook.py", line 21, in auto_init_wrapper return fn(*args, **kwargs) File "/root/miniconda3/lib/python3.10/site-packages/ray/_private/client_mode_hook.py", line 103, in wrapper return func(*args, **kwargs) File "/root/miniconda3/lib/python3.10/site-packages/ray/_private/worker.py", line 2667, in get values, debugger_breakpoint = worker.get_objects(object_refs, timeout=timeout) File "/root/miniconda3/lib/python3.10/site-packages/ray/_private/worker.py", line 864, in get_objects raise value.as_instanceof_cause() ray.exceptions.RayTaskError(RuntimeError): ray::TaskRunner.run() (pid=10086, ip=172.20.0.2, actor_id=11bc451866f5759f3a7f540[501](https://github.com/volcengine/verl/actions/runs/14220739954/job/39861249946#step:6:502)000000, repr=<main_ppo.TaskRunner object at 0x7fd00c61a110>) File "/data00/tiger/huggingface/verl/verl/verl/trainer/main_ppo.py", line 184, in run trainer.fit() File "/data00/tiger/huggingface/verl/verl/verl/trainer/ppo/ray_trainer.py", line 950, in fit val_metrics: dict = self._validate() File "/data00/tiger/huggingface/verl/verl/verl/trainer/ppo/ray_trainer.py", line 545, in _validate test_output_gen_batch_padded = self.actor_rollout_wg.generate_sequences(test_gen_batch_padded) File "/data00/tiger/huggingface/verl/verl/verl/single_controller/ray/base.py", line 42, in func output = ray.get(output) ray.exceptions.RayTaskError(RuntimeError): ray::WorkerDict.actor_rollout_generate_sequences() (pid=18980, ip=172.20.0.2, actor_id=4f21075809bd462a5907ebea01000000, repr=<verl.single_controller.ray.base.WorkerDict object at 0x7fc62ae1ce20>) File "/root/miniconda3/lib/python3.10/site-packages/vllm/worker/model_runner.py", line 1708, in execute_model output: SamplerOutput = self.model.sample( File "/root/miniconda3/lib/python3.10/site-packages/vllm/model_executor/models/llama.py", line 571, in sample next_tokens = self.sampler(logits, sampling_metadata) File "/root/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/root/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl return forward_call(*args, **kwargs) File "/root/miniconda3/lib/python3.10/site-packages/vllm/model_executor/layers/sampler.py", line 231, in forward self._init_sampling_tensors(logits, sampling_metadata) File "/root/miniconda3/lib/python3.10/site-packages/vllm/model_executor/layers/sampler.py", line 195, in _init_sampling_tensors do_min_p) = SamplingTensors.from_sampling_metadata( File "/root/miniconda3/lib/python3.10/site-packages/vllm/model_executor/sampling_metadata.py", line 471, in from_sampling_metadata sampling_tensors = SamplingTensors.from_lists( File "/root/miniconda3/lib/python3.10/site-packages/vllm/model_executor/sampling_metadata.py", line 529, in from_lists temperatures_t = torch.tensor( RuntimeError: CUDA error: an illegal memory access was encountered CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1 Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. ```
histmeisah
referenced
this pull request
in SJTU-IAAR/verl
Apr 27, 2025
Reverts volcengine#706 temporarily as it breaks CI https://github.com/volcengine/verl/actions/runs/14220739954/attempts/2 ``` (TaskRunner pid=10086) 'Initial validation metrics: {}' (TaskRunner pid=10086) step:0 (TaskRunner pid=10086) list(reward_extra_infos_dict.keys())=[] (TaskRunner pid=10086) test_gen_batch meta info: {'eos_token_id': 32021, 'pad_token_id': 32014, 'recompute_log_prob': False, 'do_sample': False, 'validate': True} (TaskRunner pid=10086) validation generation end (TaskRunner pid=10086) [prompt] You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer (TaskRunner pid=10086) ### Instruction: (TaskRunner pid=10086) Training Progress: 33%|███▎ | 1/3 [02:39<05:18, 159.11s/it] (WorkerDict pid=18977) /root/miniconda3/lib/python3.10/site-packages/torch/autograd/graph.py:768: UserWarning: c10d::broadcast_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [repeated 7x across cluster] (WorkerDict pid=18977) return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [repeated 7x across cluster] (TaskRunner pid=10086) Training Progress: 33%|███▎ | 1/3 [04:51<09:43, 291.93s/it] (WorkerDict pid=18980) [rank4]:[E402 16:49:38.988158820 ProcessGroupNCCL.cpp:1515] [PG 97 Rank 0] Process group watchdog thread terminated with exception: CUDA error: an illegal memory access was encountered (WorkerDict pid=18980) CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. (WorkerDict pid=18980) For debugging consider passing CUDA_LAUNCH_BLOCKING=1 (WorkerDict pid=18980) Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. (WorkerDict pid=18980) (WorkerDict pid=18980) Exception raised from c10_cuda_check_implementation at ../c10/cuda/CUDAException.cpp:43 (most recent call first): (WorkerDict pid=18980) frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x96 (0x7fc6e4177f86 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libc10.so) (WorkerDict pid=18980) frame #1: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::string const&) + 0x64 (0x7fc6e4126d10 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libc10.so) (WorkerDict pid=18980) frame #2: c10::cuda::c10_cuda_check_implementation(int, char const*, char const*, int, bool) + 0x118 (0x7fc6e4594f08 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libc10_cuda.so) (WorkerDict pid=18980) frame volcengine#3: c10d::ProcessGroupNCCL::WorkNCCL::finishedGPUExecutionInternal() const + 0x56 (0x7fc6927d2a56 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame volcengine#4: c10d::ProcessGroupNCCL::WorkNCCL::isCompleted() + 0xa0 (0x7fc6927d7c70 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame volcengine#5: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1da (0x7fc6927de92a in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame volcengine#6: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7fc6927e0d6c in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame volcengine#7: <unknown function> + 0xdbbf4 (0x7fc9fd477bf4 in /root/miniconda3/bin/../lib/libstdc++.so.6) (WorkerDict pid=18980) frame volcengine#8: <unknown function> + 0x94ac3 (0x7fc9ff2f0ac3 in /usr/lib/x86_64-linux-gnu/libc.so.6) (WorkerDict pid=18980) frame volcengine#9: clone + 0x44 (0x7fc9ff381a04 in /usr/lib/x86_64-linux-gnu/libc.so.6) (WorkerDict pid=18980) (WorkerDict pid=18980) [2025-04-02 16:49:38,666 E 18980 20767] logging.cc:97: Unhandled exception: N3c1016DistBackendErrorE. what(): [PG 97 Rank 0] Process group watchdog thread terminated with exception: CUDA error: an illegal memory access was encountered (WorkerDict pid=18980) CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. (WorkerDict pid=18980) For debugging consider passing CUDA_LAUNCH_BLOCKING=1 (WorkerDict pid=18980) Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. (WorkerDict pid=18980) (WorkerDict pid=18980) Exception raised from c10_cuda_check_implementation at ../c10/cuda/CUDAException.cpp:43 (most recent call first): (WorkerDict pid=18980) frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x96 (0x7fc6e4177f86 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libc10.so) (WorkerDict pid=18980) frame #1: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::string const&) + 0x64 (0x7fc6e4126d10 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libc10.so) (WorkerDict pid=18980) frame #2: c10::cuda::c10_cuda_check_implementation(int, char const*, char const*, int, bool) + 0x118 (0x7fc6e4594f08 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libc10_cuda.so) (WorkerDict pid=18980) frame volcengine#3: c10d::ProcessGroupNCCL::WorkNCCL::finishedGPUExecutionInternal() const + 0x56 (0x7fc6927d2a56 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame volcengine#4: c10d::ProcessGroupNCCL::WorkNCCL::isCompleted() + 0xa0 (0x7fc6927d7c70 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame volcengine#5: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1da (0x7fc6927de92a in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame volcengine#6: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7fc6927e0d6c in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame volcengine#7: <unknown function> + 0xdbbf4 (0x7fc9fd477bf4 in /root/miniconda3/bin/../lib/libstdc++.so.6) (WorkerDict pid=18980) frame volcengine#8: <unknown function> + 0x94ac3 (0x7fc9ff2f0ac3 in /usr/lib/x86_64-linux-gnu/libc.so.6) (WorkerDict pid=18980) frame volcengine#9: clone + 0x44 (0x7fc9ff381a04 in /usr/lib/x86_64-linux-gnu/libc.so.6) (WorkerDict pid=18980) (WorkerDict pid=18980) Exception raised from ncclCommWatchdog at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:1521 (most recent call first): (WorkerDict pid=18980) frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x96 (0x7fc6e4177f86 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libc10.so) (WorkerDict pid=18980) frame #1: <unknown function> + 0xe1a5e4 (0x7fc6924625e4 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame #2: <unknown function> + 0xdbbf4 (0x7fc9fd477bf4 in /root/miniconda3/bin/../lib/libstdc++.so.6) (WorkerDict pid=18980) frame volcengine#3: <unknown function> + 0x94ac3 (0x7fc9ff2f0ac3 in /usr/lib/x86_64-linux-gnu/libc.so.6) (WorkerDict pid=18980) frame volcengine#4: clone + 0x44 (0x7fc9ff381a04 in /usr/lib/x86_64-linux-gnu/libc.so.6) (WorkerDict pid=18980) (WorkerDict pid=18980) [2025-04-02 16:49:38,675 E 18980 20767] logging.cc:104: Stack trace: (WorkerDict pid=18980) /root/miniconda3/lib/python3.10/site-packages/ray/_raylet.so(+0xfe543a) [0x7fc9fe5a143a] ray::operator<<() (WorkerDict pid=18980) /root/miniconda3/lib/python3.10/site-packages/ray/_raylet.so(+0xfe7b78) [0x7fc9fe5a3b78] ray::TerminateHandler() (WorkerDict pid=18980) /root/miniconda3/bin/../lib/libstdc++.so.6(+0xb135a) [0x7fc9fd44d35a] __cxxabiv1::__terminate() (WorkerDict pid=18980) /root/miniconda3/bin/../lib/libstdc++.so.6(+0xb13c5) [0x7fc9fd44d3c5] (WorkerDict pid=18980) /root/miniconda3/bin/../lib/libstdc++.so.6(+0xb134f) [0x7fc9fd44d34f] (WorkerDict pid=18980) /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so(+0xe1a695) [0x7fc692462695] c10d::ProcessGroupNCCL::ncclCommWatchdog() (WorkerDict pid=18980) /root/miniconda3/bin/../lib/libstdc++.so.6(+0xdbbf4) [0x7fc9fd477bf4] execute_native_thread_routine (WorkerDict pid=18980) /usr/lib/x86_64-linux-gnu/libc.so.6(+0x94ac3) [0x7fc9ff2f0ac3] (WorkerDict pid=18980) /usr/lib/x86_64-linux-gnu/libc.so.6(clone+0x44) [0x7fc9ff381a04] __clone (WorkerDict pid=18980) (WorkerDict pid=18980) *** SIGABRT received at time=1743612578 on cpu 118 *** (WorkerDict pid=18980) PC: @ 0x7fc9ff2f29fc (unknown) pthread_kill (WorkerDict pid=18980) @ 0x7fc9ff29e520 (unknown) (unknown) (WorkerDict pid=18980) [2025-04-02 16:49:38,675 E 18980 20767] logging.cc:361: *** SIGABRT received at time=1743612578 on cpu 118 *** (WorkerDict pid=18980) [2025-04-02 16:49:38,675 E 18980 20767] logging.cc:361: PC: @ 0x7fc9ff2f29fc (unknown) pthread_kill (WorkerDict pid=18980) [2025-04-02 16:49:38,675 E 18980 20767] logging.cc:361: @ 0x7fc9ff29e520 (unknown) (unknown) (WorkerDict pid=18980) Fatal Python error: Aborted (WorkerDict pid=18980) (WorkerDict pid=18980) (WorkerDict pid=18980) Extension modules: msgpack._cmsgpack, google._upb._message, psutil._psutil_linux, psutil._psutil_posix, setproctitle, yaml._yaml, _brotli, zstandard.backend_c, uvloop.loop, ray._raylet, numpy.core._multiarray_umath, numpy.core._multiarray_tests, numpy.linalg._umath_linalg, numpy.fft._pocketfft_internal, numpy.random._common, numpy.random.bit_generator, numpy.random._bounded_integers, numpy.random._mt19937, numpy.random.mtrand, numpy.random._philox, numpy.random._pcg64, numpy.random._sfc64, numpy.random._generator, pyarrow.lib, pandas._libs.tslibs.ccalendar, pandas._libs.tslibs.np_datetime, pandas._libs.tslibs.dtypes, pandas._libs.tslibs.base, pandas._libs.tslibs.nattype, pandas._libs.tslibs.timezones, pandas._libs.tslibs.fields, pandas._libs.tslibs.timedeltas, pandas._libs.tslibs.tzconversion, pandas._libs.tslibs.timestamps, pandas._libs.properties, pandas._libs.tslibs.offsets, pandas._libs.tslibs.strptime, pandas._libs.tslibs.parsing, pandas._libs.tslibs.conversion, pandas._libs.tslibs.period, pandas._libs.tslibs.vectorized, pandas._libs.ops_dispatch, pandas._libs.missing, pandas._libs.hashtable, pandas._libs.algos, pandas._libs.interval, pandas._libs.lib, pyarrow._compute, pandas._libs.ops, pandas._libs.hashing, pandas._libs.arrays, pandas._libs.tslib, pandas._libs.sparse, pandas._libs.internals, pandas._libs.indexing, pandas._libs.index, pandas._libs.writers, pandas._libs.join, pandas._libs.window.aggregations, pandas._libs.window.indexers, pandas._libs.reshape, pandas._libs.groupby, pandas._libs.json, pandas._libs.parsers, pandas._libs.testing, torch._C, torch._C._fft, torch._C._linalg, torch._C._nested, torch._C._nn, torch._C._sparse, torch._C._special, markupsafe._speedups, PIL._imaging, msgspec._core, sentencepiece._sentencepiece, PIL._imagingft, regex._regex, multidict._multidict, yarl._helpers_c, yarl._quoting_c, aiohttp._helpers, aiohttp._http_writer, aiohttp._http_parser, aiohttp._websocket, frozenlist._frozenlist, pyarrow._json, zmq.backend.cython.context, zmq.backend.cython.message, zmq.backend.cython.socket, zmq.backend.cython._device, zmq.backend.cython._poll, zmq.backend.cython._proxy_steerable, zmq.backend.cython._version, zmq.backend.cython.error, zmq.backend.cython.utils (total: 96) Error executing job with overrides: ['algorithm.adv_estimator=gae', 'data.train_files=/github/home/data/gsm8k/train.parquet', 'data.val_files=/github/home/data/gsm8k/test.parquet', 'data.train_batch_size=1024', 'data.max_prompt_length=512', 'data.max_response_length=512', 'actor_rollout_ref.model.path=/github/home/models/deepseek-ai/deepseek-coder-1.3b-instruct', 'actor_rollout_ref.actor.optim.lr=2e-6', 'actor_rollout_ref.actor.ppo_mini_batch_size=256', 'actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=4', 'actor_rollout_ref.actor.megatron.pipeline_model_parallel_size=2', 'actor_rollout_ref.actor.megatron.virtual_pipeline_model_parallel_size=2', 'actor_rollout_ref.actor.megatron.tensor_model_parallel_size=4', 'actor_rollout_ref.actor.use_kl_loss=False', 'actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=8', 'actor_rollout_ref.rollout.tensor_model_parallel_size=2', 'actor_rollout_ref.rollout.name=vllm', 'actor_rollout_ref.rollout.gpu_memory_utilization=0.5', 'actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=16', 'actor_rollout_ref.ref.megatron.pipeline_model_parallel_size=2', 'actor_rollout_ref.ref.megatron.virtual_pipeline_model_parallel_size=2', 'actor_rollout_ref.ref.megatron.tensor_model_parallel_size=2', 'critic.optim.lr=2e-5', 'critic.model.path=/github/home/models/deepseek-ai/deepseek-coder-1.3b-instruct', 'critic.model.enable_gradient_checkpointing=False', 'critic.ppo_micro_batch_size_per_gpu=4', 'critic.megatron.pipeline_model_parallel_size=2', 'critic.megatron.virtual_pipeline_model_parallel_size=2', 'critic.megatron.tensor_model_parallel_size=2', 'algorithm.use_kl_in_reward=True', 'algorithm.kl_penalty=kl', 'algorithm.kl_ctrl.kl_coef=0.001', 'trainer.critic_warmup=0', 'trainer.logger=[console]', 'trainer.project_name=verl_megatron_gsm8k_examples', 'trainer.experiment_name=deepseek_llm_1b3_function_rm', 'trainer.n_gpus_per_node=8', 'trainer.nnodes=1', 'trainer.save_freq=-1', 'trainer.test_freq=1', 'trainer.total_epochs=15', 'trainer.total_training_steps=3'] (TaskRunner pid=10086) Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells the remainder at the farmers' market daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers' market? Let's think step by step and output the final answer after "####". (TaskRunner pid=10086) ### Response: (TaskRunner pid=10086) (TaskRunner pid=10086) [response] I'm sorry, but as an AI programming assistant, I'm specialized in answering questions related to computer science. I'm not equipped to provide answers to questions about economics or business calculations. I recommend using a calculator or a business-oriented tool for this type of question. (TaskRunner pid=10086) (TaskRunner pid=10086) [ground_truth] 18 (TaskRunner pid=10086) [score] 0.0 (TaskRunner pid=10086) step:1 - global_seqlen/min:[486](https://github.com/volcengine/verl/actions/runs/14220739954/job/39861249946#step:6:487)35.000 - global_seqlen/max:51694.000 - global_seqlen/minmax_diff:3059.000 - global_seqlen/balanced_min:49636.000 - global_seqlen/balanced_max:49637.000 - global_seqlen/mean:49636.125 - actor/reward_kl_penalty:0.000 - actor/reward_kl_penalty_coeff:0.001 - critic/vf_loss:0.015 - critic/vf_clipfrac:0.001 - critic/vpred_mean:0.007 - perf/mfu/critic:0.105 - actor/entropy_loss:0.550 - actor/pg_loss:-0.000 - actor/pg_clipfrac:0.018 - actor/ppo_kl:0.000 - actor/pg_clipfrac_lower:0.000 - perf/mfu/actor:0.106 - critic/score/mean:0.000 - critic/score/max:0.000 - critic/score/min:0.000 - critic/rewards/mean:0.000 - critic/rewards/max:0.000 - critic/rewards/min:0.000 - critic/advantages/mean:-0.000 - critic/advantages/max:4.994 - critic/advantages/min:-5.666 - critic/returns/mean:-0.000 - critic/returns/max:0.000 - critic/returns/min:-0.000 - critic/values/mean:-0.164 - critic/values/max:0.785 - critic/values/min:-1.000 - critic/vf_explained_var:-2803.085 - response_length/mean:239.112 - response_length/max:512.000 - response_length/min:11.000 - response_length/clip_ratio:0.029 - prompt_length/mean:148.670 - prompt_length/max:275.000 - prompt_length/min:106.000 - prompt_length/clip_ratio:0.000 - timing_s/gen:18.608 - timing_s/old_log_prob:15.249 - timing_s/ref:14.[488](https://github.com/volcengine/verl/actions/runs/14220739954/job/39861249946#step:6:489) - timing_s/values:16.315 - timing_s/adv:0.264 - timing_s/update_critic:33.651 - timing_s/update_actor:33.472 - timing_s/testing:25.497 - timing_s/step:157.587 - timing_per_token_ms/adv:0.001 - timing_per_token_ms/gen:0.076 - timing_per_token_ms/update_actor:0.084 - timing_per_token_ms/values:0.041 - timing_per_token_ms/update_critic:0.085 - timing_per_token_ms/ref:0.036 - perf/total_num_tokens:397089.000 - perf/time_per_step:157.587 - perf/throughput:314.976 (TaskRunner pid=10086) list(reward_extra_infos_dict.keys())=[] (TaskRunner pid=10086) test_gen_batch meta info: {'eos_token_id': 32021, 'pad_token_id': 32014, 'recompute_log_prob': False, 'do_sample': False, 'validate': True} (WorkerDict pid=18980) WARNING 04-02 16:49:38 model_runner_base.py:143] Failed to pickle inputs of failed execution: CUDA error: an illegal memory access was encountered (WorkerDict pid=18980) WARNING 04-02 16:49:38 model_runner_base.py:143] CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. (WorkerDict pid=18980) WARNING 04-02 16:49:38 model_runner_base.py:143] For debugging consider passing CUDA_LAUNCH_BLOCKING=1 (WorkerDict pid=18980) WARNING 04-02 16:49:38 model_runner_base.py:143] Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. (WorkerDict pid=18980) WARNING 04-02 16:49:38 model_runner_base.py:143] Traceback (most recent call last): File "/data00/tiger/huggingface/verl/verl/verl/trainer/main_ppo.py", line 54, in main run_ppo(config) File "/data00/tiger/huggingface/verl/verl/verl/trainer/main_ppo.py", line 72, in run_ppo ray.get(runner.run.remote(config)) File "/root/miniconda3/lib/python3.10/site-packages/ray/_private/auto_init_hook.py", line 21, in auto_init_wrapper return fn(*args, **kwargs) File "/root/miniconda3/lib/python3.10/site-packages/ray/_private/client_mode_hook.py", line 103, in wrapper return func(*args, **kwargs) File "/root/miniconda3/lib/python3.10/site-packages/ray/_private/worker.py", line 2667, in get values, debugger_breakpoint = worker.get_objects(object_refs, timeout=timeout) File "/root/miniconda3/lib/python3.10/site-packages/ray/_private/worker.py", line 864, in get_objects raise value.as_instanceof_cause() ray.exceptions.RayTaskError(RuntimeError): ray::TaskRunner.run() (pid=10086, ip=172.20.0.2, actor_id=11bc451866f5759f3a7f540[501](https://github.com/volcengine/verl/actions/runs/14220739954/job/39861249946#step:6:502)000000, repr=<main_ppo.TaskRunner object at 0x7fd00c61a110>) File "/data00/tiger/huggingface/verl/verl/verl/trainer/main_ppo.py", line 184, in run trainer.fit() File "/data00/tiger/huggingface/verl/verl/verl/trainer/ppo/ray_trainer.py", line 950, in fit val_metrics: dict = self._validate() File "/data00/tiger/huggingface/verl/verl/verl/trainer/ppo/ray_trainer.py", line 545, in _validate test_output_gen_batch_padded = self.actor_rollout_wg.generate_sequences(test_gen_batch_padded) File "/data00/tiger/huggingface/verl/verl/verl/single_controller/ray/base.py", line 42, in func output = ray.get(output) ray.exceptions.RayTaskError(RuntimeError): ray::WorkerDict.actor_rollout_generate_sequences() (pid=18980, ip=172.20.0.2, actor_id=4f21075809bd462a5907ebea01000000, repr=<verl.single_controller.ray.base.WorkerDict object at 0x7fc62ae1ce20>) File "/root/miniconda3/lib/python3.10/site-packages/vllm/worker/model_runner.py", line 1708, in execute_model output: SamplerOutput = self.model.sample( File "/root/miniconda3/lib/python3.10/site-packages/vllm/model_executor/models/llama.py", line 571, in sample next_tokens = self.sampler(logits, sampling_metadata) File "/root/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/root/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl return forward_call(*args, **kwargs) File "/root/miniconda3/lib/python3.10/site-packages/vllm/model_executor/layers/sampler.py", line 231, in forward self._init_sampling_tensors(logits, sampling_metadata) File "/root/miniconda3/lib/python3.10/site-packages/vllm/model_executor/layers/sampler.py", line 195, in _init_sampling_tensors do_min_p) = SamplingTensors.from_sampling_metadata( File "/root/miniconda3/lib/python3.10/site-packages/vllm/model_executor/sampling_metadata.py", line 471, in from_sampling_metadata sampling_tensors = SamplingTensors.from_lists( File "/root/miniconda3/lib/python3.10/site-packages/vllm/model_executor/sampling_metadata.py", line 529, in from_lists temperatures_t = torch.tensor( RuntimeError: CUDA error: an illegal memory access was encountered CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1 Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. ```
HyperdriveHustle
referenced
this pull request
in HyperdriveHustle/verl
May 23, 2025
Reverts volcengine#706 temporarily as it breaks CI https://github.com/volcengine/verl/actions/runs/14220739954/attempts/2 ``` (TaskRunner pid=10086) 'Initial validation metrics: {}' (TaskRunner pid=10086) step:0 (TaskRunner pid=10086) list(reward_extra_infos_dict.keys())=[] (TaskRunner pid=10086) test_gen_batch meta info: {'eos_token_id': 32021, 'pad_token_id': 32014, 'recompute_log_prob': False, 'do_sample': False, 'validate': True} (TaskRunner pid=10086) validation generation end (TaskRunner pid=10086) [prompt] You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer (TaskRunner pid=10086) ### Instruction: (TaskRunner pid=10086) Training Progress: 33%|███▎ | 1/3 [02:39<05:18, 159.11s/it] (WorkerDict pid=18977) /root/miniconda3/lib/python3.10/site-packages/torch/autograd/graph.py:768: UserWarning: c10d::broadcast_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [repeated 7x across cluster] (WorkerDict pid=18977) return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [repeated 7x across cluster] (TaskRunner pid=10086) Training Progress: 33%|███▎ | 1/3 [04:51<09:43, 291.93s/it] (WorkerDict pid=18980) [rank4]:[E402 16:49:38.988158820 ProcessGroupNCCL.cpp:1515] [PG 97 Rank 0] Process group watchdog thread terminated with exception: CUDA error: an illegal memory access was encountered (WorkerDict pid=18980) CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. (WorkerDict pid=18980) For debugging consider passing CUDA_LAUNCH_BLOCKING=1 (WorkerDict pid=18980) Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. (WorkerDict pid=18980) (WorkerDict pid=18980) Exception raised from c10_cuda_check_implementation at ../c10/cuda/CUDAException.cpp:43 (most recent call first): (WorkerDict pid=18980) frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x96 (0x7fc6e4177f86 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libc10.so) (WorkerDict pid=18980) frame #1: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::string const&) + 0x64 (0x7fc6e4126d10 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libc10.so) (WorkerDict pid=18980) frame #2: c10::cuda::c10_cuda_check_implementation(int, char const*, char const*, int, bool) + 0x118 (0x7fc6e4594f08 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libc10_cuda.so) (WorkerDict pid=18980) frame #3: c10d::ProcessGroupNCCL::WorkNCCL::finishedGPUExecutionInternal() const + 0x56 (0x7fc6927d2a56 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame #4: c10d::ProcessGroupNCCL::WorkNCCL::isCompleted() + 0xa0 (0x7fc6927d7c70 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame #5: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1da (0x7fc6927de92a in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame volcengine#6: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7fc6927e0d6c in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame volcengine#7: <unknown function> + 0xdbbf4 (0x7fc9fd477bf4 in /root/miniconda3/bin/../lib/libstdc++.so.6) (WorkerDict pid=18980) frame volcengine#8: <unknown function> + 0x94ac3 (0x7fc9ff2f0ac3 in /usr/lib/x86_64-linux-gnu/libc.so.6) (WorkerDict pid=18980) frame volcengine#9: clone + 0x44 (0x7fc9ff381a04 in /usr/lib/x86_64-linux-gnu/libc.so.6) (WorkerDict pid=18980) (WorkerDict pid=18980) [2025-04-02 16:49:38,666 E 18980 20767] logging.cc:97: Unhandled exception: N3c1016DistBackendErrorE. what(): [PG 97 Rank 0] Process group watchdog thread terminated with exception: CUDA error: an illegal memory access was encountered (WorkerDict pid=18980) CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. (WorkerDict pid=18980) For debugging consider passing CUDA_LAUNCH_BLOCKING=1 (WorkerDict pid=18980) Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. (WorkerDict pid=18980) (WorkerDict pid=18980) Exception raised from c10_cuda_check_implementation at ../c10/cuda/CUDAException.cpp:43 (most recent call first): (WorkerDict pid=18980) frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x96 (0x7fc6e4177f86 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libc10.so) (WorkerDict pid=18980) frame #1: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::string const&) + 0x64 (0x7fc6e4126d10 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libc10.so) (WorkerDict pid=18980) frame #2: c10::cuda::c10_cuda_check_implementation(int, char const*, char const*, int, bool) + 0x118 (0x7fc6e4594f08 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libc10_cuda.so) (WorkerDict pid=18980) frame #3: c10d::ProcessGroupNCCL::WorkNCCL::finishedGPUExecutionInternal() const + 0x56 (0x7fc6927d2a56 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame #4: c10d::ProcessGroupNCCL::WorkNCCL::isCompleted() + 0xa0 (0x7fc6927d7c70 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame #5: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1da (0x7fc6927de92a in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame volcengine#6: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7fc6927e0d6c in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame volcengine#7: <unknown function> + 0xdbbf4 (0x7fc9fd477bf4 in /root/miniconda3/bin/../lib/libstdc++.so.6) (WorkerDict pid=18980) frame volcengine#8: <unknown function> + 0x94ac3 (0x7fc9ff2f0ac3 in /usr/lib/x86_64-linux-gnu/libc.so.6) (WorkerDict pid=18980) frame volcengine#9: clone + 0x44 (0x7fc9ff381a04 in /usr/lib/x86_64-linux-gnu/libc.so.6) (WorkerDict pid=18980) (WorkerDict pid=18980) Exception raised from ncclCommWatchdog at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:1521 (most recent call first): (WorkerDict pid=18980) frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x96 (0x7fc6e4177f86 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libc10.so) (WorkerDict pid=18980) frame #1: <unknown function> + 0xe1a5e4 (0x7fc6924625e4 in /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) (WorkerDict pid=18980) frame #2: <unknown function> + 0xdbbf4 (0x7fc9fd477bf4 in /root/miniconda3/bin/../lib/libstdc++.so.6) (WorkerDict pid=18980) frame #3: <unknown function> + 0x94ac3 (0x7fc9ff2f0ac3 in /usr/lib/x86_64-linux-gnu/libc.so.6) (WorkerDict pid=18980) frame #4: clone + 0x44 (0x7fc9ff381a04 in /usr/lib/x86_64-linux-gnu/libc.so.6) (WorkerDict pid=18980) (WorkerDict pid=18980) [2025-04-02 16:49:38,675 E 18980 20767] logging.cc:104: Stack trace: (WorkerDict pid=18980) /root/miniconda3/lib/python3.10/site-packages/ray/_raylet.so(+0xfe543a) [0x7fc9fe5a143a] ray::operator<<() (WorkerDict pid=18980) /root/miniconda3/lib/python3.10/site-packages/ray/_raylet.so(+0xfe7b78) [0x7fc9fe5a3b78] ray::TerminateHandler() (WorkerDict pid=18980) /root/miniconda3/bin/../lib/libstdc++.so.6(+0xb135a) [0x7fc9fd44d35a] __cxxabiv1::__terminate() (WorkerDict pid=18980) /root/miniconda3/bin/../lib/libstdc++.so.6(+0xb13c5) [0x7fc9fd44d3c5] (WorkerDict pid=18980) /root/miniconda3/bin/../lib/libstdc++.so.6(+0xb134f) [0x7fc9fd44d34f] (WorkerDict pid=18980) /root/miniconda3/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so(+0xe1a695) [0x7fc692462695] c10d::ProcessGroupNCCL::ncclCommWatchdog() (WorkerDict pid=18980) /root/miniconda3/bin/../lib/libstdc++.so.6(+0xdbbf4) [0x7fc9fd477bf4] execute_native_thread_routine (WorkerDict pid=18980) /usr/lib/x86_64-linux-gnu/libc.so.6(+0x94ac3) [0x7fc9ff2f0ac3] (WorkerDict pid=18980) /usr/lib/x86_64-linux-gnu/libc.so.6(clone+0x44) [0x7fc9ff381a04] __clone (WorkerDict pid=18980) (WorkerDict pid=18980) *** SIGABRT received at time=1743612578 on cpu 118 *** (WorkerDict pid=18980) PC: @ 0x7fc9ff2f29fc (unknown) pthread_kill (WorkerDict pid=18980) @ 0x7fc9ff29e520 (unknown) (unknown) (WorkerDict pid=18980) [2025-04-02 16:49:38,675 E 18980 20767] logging.cc:361: *** SIGABRT received at time=1743612578 on cpu 118 *** (WorkerDict pid=18980) [2025-04-02 16:49:38,675 E 18980 20767] logging.cc:361: PC: @ 0x7fc9ff2f29fc (unknown) pthread_kill (WorkerDict pid=18980) [2025-04-02 16:49:38,675 E 18980 20767] logging.cc:361: @ 0x7fc9ff29e520 (unknown) (unknown) (WorkerDict pid=18980) Fatal Python error: Aborted (WorkerDict pid=18980) (WorkerDict pid=18980) (WorkerDict pid=18980) Extension modules: msgpack._cmsgpack, google._upb._message, psutil._psutil_linux, psutil._psutil_posix, setproctitle, yaml._yaml, _brotli, zstandard.backend_c, uvloop.loop, ray._raylet, numpy.core._multiarray_umath, numpy.core._multiarray_tests, numpy.linalg._umath_linalg, numpy.fft._pocketfft_internal, numpy.random._common, numpy.random.bit_generator, numpy.random._bounded_integers, numpy.random._mt19937, numpy.random.mtrand, numpy.random._philox, numpy.random._pcg64, numpy.random._sfc64, numpy.random._generator, pyarrow.lib, pandas._libs.tslibs.ccalendar, pandas._libs.tslibs.np_datetime, pandas._libs.tslibs.dtypes, pandas._libs.tslibs.base, pandas._libs.tslibs.nattype, pandas._libs.tslibs.timezones, pandas._libs.tslibs.fields, pandas._libs.tslibs.timedeltas, pandas._libs.tslibs.tzconversion, pandas._libs.tslibs.timestamps, pandas._libs.properties, pandas._libs.tslibs.offsets, pandas._libs.tslibs.strptime, pandas._libs.tslibs.parsing, pandas._libs.tslibs.conversion, pandas._libs.tslibs.period, pandas._libs.tslibs.vectorized, pandas._libs.ops_dispatch, pandas._libs.missing, pandas._libs.hashtable, pandas._libs.algos, pandas._libs.interval, pandas._libs.lib, pyarrow._compute, pandas._libs.ops, pandas._libs.hashing, pandas._libs.arrays, pandas._libs.tslib, pandas._libs.sparse, pandas._libs.internals, pandas._libs.indexing, pandas._libs.index, pandas._libs.writers, pandas._libs.join, pandas._libs.window.aggregations, pandas._libs.window.indexers, pandas._libs.reshape, pandas._libs.groupby, pandas._libs.json, pandas._libs.parsers, pandas._libs.testing, torch._C, torch._C._fft, torch._C._linalg, torch._C._nested, torch._C._nn, torch._C._sparse, torch._C._special, markupsafe._speedups, PIL._imaging, msgspec._core, sentencepiece._sentencepiece, PIL._imagingft, regex._regex, multidict._multidict, yarl._helpers_c, yarl._quoting_c, aiohttp._helpers, aiohttp._http_writer, aiohttp._http_parser, aiohttp._websocket, frozenlist._frozenlist, pyarrow._json, zmq.backend.cython.context, zmq.backend.cython.message, zmq.backend.cython.socket, zmq.backend.cython._device, zmq.backend.cython._poll, zmq.backend.cython._proxy_steerable, zmq.backend.cython._version, zmq.backend.cython.error, zmq.backend.cython.utils (total: 96) Error executing job with overrides: ['algorithm.adv_estimator=gae', 'data.train_files=/github/home/data/gsm8k/train.parquet', 'data.val_files=/github/home/data/gsm8k/test.parquet', 'data.train_batch_size=1024', 'data.max_prompt_length=512', 'data.max_response_length=512', 'actor_rollout_ref.model.path=/github/home/models/deepseek-ai/deepseek-coder-1.3b-instruct', 'actor_rollout_ref.actor.optim.lr=2e-6', 'actor_rollout_ref.actor.ppo_mini_batch_size=256', 'actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=4', 'actor_rollout_ref.actor.megatron.pipeline_model_parallel_size=2', 'actor_rollout_ref.actor.megatron.virtual_pipeline_model_parallel_size=2', 'actor_rollout_ref.actor.megatron.tensor_model_parallel_size=4', 'actor_rollout_ref.actor.use_kl_loss=False', 'actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=8', 'actor_rollout_ref.rollout.tensor_model_parallel_size=2', 'actor_rollout_ref.rollout.name=vllm', 'actor_rollout_ref.rollout.gpu_memory_utilization=0.5', 'actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=16', 'actor_rollout_ref.ref.megatron.pipeline_model_parallel_size=2', 'actor_rollout_ref.ref.megatron.virtual_pipeline_model_parallel_size=2', 'actor_rollout_ref.ref.megatron.tensor_model_parallel_size=2', 'critic.optim.lr=2e-5', 'critic.model.path=/github/home/models/deepseek-ai/deepseek-coder-1.3b-instruct', 'critic.model.enable_gradient_checkpointing=False', 'critic.ppo_micro_batch_size_per_gpu=4', 'critic.megatron.pipeline_model_parallel_size=2', 'critic.megatron.virtual_pipeline_model_parallel_size=2', 'critic.megatron.tensor_model_parallel_size=2', 'algorithm.use_kl_in_reward=True', 'algorithm.kl_penalty=kl', 'algorithm.kl_ctrl.kl_coef=0.001', 'trainer.critic_warmup=0', 'trainer.logger=[console]', 'trainer.project_name=verl_megatron_gsm8k_examples', 'trainer.experiment_name=deepseek_llm_1b3_function_rm', 'trainer.n_gpus_per_node=8', 'trainer.nnodes=1', 'trainer.save_freq=-1', 'trainer.test_freq=1', 'trainer.total_epochs=15', 'trainer.total_training_steps=3'] (TaskRunner pid=10086) Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells the remainder at the farmers' market daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers' market? Let's think step by step and output the final answer after "####". (TaskRunner pid=10086) ### Response: (TaskRunner pid=10086) (TaskRunner pid=10086) [response] I'm sorry, but as an AI programming assistant, I'm specialized in answering questions related to computer science. I'm not equipped to provide answers to questions about economics or business calculations. I recommend using a calculator or a business-oriented tool for this type of question. (TaskRunner pid=10086) (TaskRunner pid=10086) [ground_truth] 18 (TaskRunner pid=10086) [score] 0.0 (TaskRunner pid=10086) step:1 - global_seqlen/min:[486](https://github.com/volcengine/verl/actions/runs/14220739954/job/39861249946#step:6:487)35.000 - global_seqlen/max:51694.000 - global_seqlen/minmax_diff:3059.000 - global_seqlen/balanced_min:49636.000 - global_seqlen/balanced_max:49637.000 - global_seqlen/mean:49636.125 - actor/reward_kl_penalty:0.000 - actor/reward_kl_penalty_coeff:0.001 - critic/vf_loss:0.015 - critic/vf_clipfrac:0.001 - critic/vpred_mean:0.007 - perf/mfu/critic:0.105 - actor/entropy_loss:0.550 - actor/pg_loss:-0.000 - actor/pg_clipfrac:0.018 - actor/ppo_kl:0.000 - actor/pg_clipfrac_lower:0.000 - perf/mfu/actor:0.106 - critic/score/mean:0.000 - critic/score/max:0.000 - critic/score/min:0.000 - critic/rewards/mean:0.000 - critic/rewards/max:0.000 - critic/rewards/min:0.000 - critic/advantages/mean:-0.000 - critic/advantages/max:4.994 - critic/advantages/min:-5.666 - critic/returns/mean:-0.000 - critic/returns/max:0.000 - critic/returns/min:-0.000 - critic/values/mean:-0.164 - critic/values/max:0.785 - critic/values/min:-1.000 - critic/vf_explained_var:-2803.085 - response_length/mean:239.112 - response_length/max:512.000 - response_length/min:11.000 - response_length/clip_ratio:0.029 - prompt_length/mean:148.670 - prompt_length/max:275.000 - prompt_length/min:106.000 - prompt_length/clip_ratio:0.000 - timing_s/gen:18.608 - timing_s/old_log_prob:15.249 - timing_s/ref:14.[488](https://github.com/volcengine/verl/actions/runs/14220739954/job/39861249946#step:6:489) - timing_s/values:16.315 - timing_s/adv:0.264 - timing_s/update_critic:33.651 - timing_s/update_actor:33.472 - timing_s/testing:25.497 - timing_s/step:157.587 - timing_per_token_ms/adv:0.001 - timing_per_token_ms/gen:0.076 - timing_per_token_ms/update_actor:0.084 - timing_per_token_ms/values:0.041 - timing_per_token_ms/update_critic:0.085 - timing_per_token_ms/ref:0.036 - perf/total_num_tokens:397089.000 - perf/time_per_step:157.587 - perf/throughput:314.976 (TaskRunner pid=10086) list(reward_extra_infos_dict.keys())=[] (TaskRunner pid=10086) test_gen_batch meta info: {'eos_token_id': 32021, 'pad_token_id': 32014, 'recompute_log_prob': False, 'do_sample': False, 'validate': True} (WorkerDict pid=18980) WARNING 04-02 16:49:38 model_runner_base.py:143] Failed to pickle inputs of failed execution: CUDA error: an illegal memory access was encountered (WorkerDict pid=18980) WARNING 04-02 16:49:38 model_runner_base.py:143] CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. (WorkerDict pid=18980) WARNING 04-02 16:49:38 model_runner_base.py:143] For debugging consider passing CUDA_LAUNCH_BLOCKING=1 (WorkerDict pid=18980) WARNING 04-02 16:49:38 model_runner_base.py:143] Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. (WorkerDict pid=18980) WARNING 04-02 16:49:38 model_runner_base.py:143] Traceback (most recent call last): File "/data00/tiger/huggingface/verl/verl/verl/trainer/main_ppo.py", line 54, in main run_ppo(config) File "/data00/tiger/huggingface/verl/verl/verl/trainer/main_ppo.py", line 72, in run_ppo ray.get(runner.run.remote(config)) File "/root/miniconda3/lib/python3.10/site-packages/ray/_private/auto_init_hook.py", line 21, in auto_init_wrapper return fn(*args, **kwargs) File "/root/miniconda3/lib/python3.10/site-packages/ray/_private/client_mode_hook.py", line 103, in wrapper return func(*args, **kwargs) File "/root/miniconda3/lib/python3.10/site-packages/ray/_private/worker.py", line 2667, in get values, debugger_breakpoint = worker.get_objects(object_refs, timeout=timeout) File "/root/miniconda3/lib/python3.10/site-packages/ray/_private/worker.py", line 864, in get_objects raise value.as_instanceof_cause() ray.exceptions.RayTaskError(RuntimeError): ray::TaskRunner.run() (pid=10086, ip=172.20.0.2, actor_id=11bc451866f5759f3a7f540[501](https://github.com/volcengine/verl/actions/runs/14220739954/job/39861249946#step:6:502)000000, repr=<main_ppo.TaskRunner object at 0x7fd00c61a110>) File "/data00/tiger/huggingface/verl/verl/verl/trainer/main_ppo.py", line 184, in run trainer.fit() File "/data00/tiger/huggingface/verl/verl/verl/trainer/ppo/ray_trainer.py", line 950, in fit val_metrics: dict = self._validate() File "/data00/tiger/huggingface/verl/verl/verl/trainer/ppo/ray_trainer.py", line 545, in _validate test_output_gen_batch_padded = self.actor_rollout_wg.generate_sequences(test_gen_batch_padded) File "/data00/tiger/huggingface/verl/verl/verl/single_controller/ray/base.py", line 42, in func output = ray.get(output) ray.exceptions.RayTaskError(RuntimeError): ray::WorkerDict.actor_rollout_generate_sequences() (pid=18980, ip=172.20.0.2, actor_id=4f21075809bd462a5907ebea01000000, repr=<verl.single_controller.ray.base.WorkerDict object at 0x7fc62ae1ce20>) File "/root/miniconda3/lib/python3.10/site-packages/vllm/worker/model_runner.py", line 1708, in execute_model output: SamplerOutput = self.model.sample( File "/root/miniconda3/lib/python3.10/site-packages/vllm/model_executor/models/llama.py", line 571, in sample next_tokens = self.sampler(logits, sampling_metadata) File "/root/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/root/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl return forward_call(*args, **kwargs) File "/root/miniconda3/lib/python3.10/site-packages/vllm/model_executor/layers/sampler.py", line 231, in forward self._init_sampling_tensors(logits, sampling_metadata) File "/root/miniconda3/lib/python3.10/site-packages/vllm/model_executor/layers/sampler.py", line 195, in _init_sampling_tensors do_min_p) = SamplingTensors.from_sampling_metadata( File "/root/miniconda3/lib/python3.10/site-packages/vllm/model_executor/sampling_metadata.py", line 471, in from_sampling_metadata sampling_tensors = SamplingTensors.from_lists( File "/root/miniconda3/lib/python3.10/site-packages/vllm/model_executor/sampling_metadata.py", line 529, in from_lists temperatures_t = torch.tensor( RuntimeError: CUDA error: an illegal memory access was encountered CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1 Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. ```
This was referenced May 26, 2025
kaiyliu
pushed a commit
to kaiyliu/knowl_verl
that referenced
this pull request
Jun 27, 2025
wuxibin89
pushed a commit
that referenced
this pull request
Jul 7, 2025
### What does this PR do? Fix a regression from #1911, because the PR did not change the sglang async branch. CI did not catch this error because it only run 1 step, but this error happen in the second test. So I update the testcases to run 2 steps. To reproduce the bug, run test: TOTAL_TRAIN_STEPS=2 ENGINE=sglang ROLLOUT_MODE=async bash tests/special_e2e/ppo_trainer/run_function_reward.sh It fail with: ``` (WorkerDict pid=1257286) Total steps: 2, num_warmup_steps: 0 (WorkerDict pid=1257286) Actor use_remove_padding=True (WorkerDict pid=1257286) Actor use_fused_kernels=False (AsyncSglangServer pid=1260392) FastAPI listen on [192.168.111.48:40451](http://192.168.111.48:40451/) (WorkerDict pid=1257286) terminate called after throwing an instance of 'c10::Error' (WorkerDict pid=1257286) what(): CUDA error: an illegal memory access was encountered (WorkerDict pid=1257286) CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. (WorkerDict pid=1257286) For debugging consider passing CUDA_LAUNCH_BLOCKING=1 (WorkerDict pid=1257286) Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. (WorkerDict pid=1257286) (WorkerDict pid=1257286) Exception raised from c10_cuda_check_implementation at /pytorch/c10/cuda/CUDAException.cpp:43 (most recent call first): (WorkerDict pid=1257286) frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x96 (0x7fbf6036c1b6 in /usr/local/lib/python3.10/dist-packages/torch/lib/[libc10.so](http://libc10.so/)) (WorkerDict pid=1257286) frame #1: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::string const&) + 0x64 (0x7fbf60315a76 in /usr/local/lib/python3.10/dist-packages/torch/lib/[libc10.so](http://libc10.so/)) (WorkerDict pid=1257286) frame #2: c10::cuda::c10_cuda_check_implementation(int, char const*, char const*, int, bool) + 0x118 (0x7fbf6080d918 in ``` ### Checklist Before Starting - [X] Search for similar PRs. Paste at least one query link here: https://github.com/volcengine/verl/issues?q=is%3Aissue%20state%3Aopen%20an%20illegal%20memory%20access%20was%20encountered - [X] Format the PR title as `[{modules}] {type}: {description}` (This will be checked by the CI) - `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data` - If this PR involves multiple modules, separate them with `,` like `[megatron, fsdp, doc]` - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test` - If this PR breaks any API (CLI arguments, config, function signature, etc.), add `[BREAKING]` to the beginning of the title. - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching` ### Test ``` (TaskRunner pid=1647269) step:2 - global_seqlen/min:13075 - global_seqlen/max:14837 - global_seqlen/minmax_diff:1762 - global_seqlen/balanced_min:14231 - global_seqlen/balanced_max:14232 - global_seqlen/mean:14231.5 - actor/entropy:2.0606913566589355 - critic/vf_loss:8.7157882153 ``` ### API and Usage Example > Demonstrate how the API changes if any, and provide usage example(s) if possible. ```python # Add code snippet or script demonstrating how to use this ``` ### High-Level Design > Demonstrate the high-level design if this PR is complex. ### Specific Changes > List the specific changes. ### Checklist Before Submitting > [!IMPORTANT] > Please check all the following items before requesting a review, otherwise the reviewer might deprioritize this PR for review. - [X] Read the [Contribute Guide](https://github.com/volcengine/verl?tab=readme-ov-file#contribution-guide). - [ X] Apply [pre-commit checks](https://github.com/volcengine/verl?tab=readme-ov-file#code-linting-and-formatting): `pre-commit install && pre-commit run --all-files --show-diff-on-failure --color=always` - [X] Add / Update [the documentation](https://github.com/volcengine/verl/tree/main/docs). - [X] Add unit or end-to-end test(s) to [the CI workflow](https://github.com/volcengine/verl/tree/main/.github/workflows) to cover all the code. If not feasible, explain why: ... - [X] Once your PR is ready for CI, send a message in [the `ci-request` channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the `verl` Slack workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
yellowbee686
pushed a commit
to yellowbee686/verl
that referenced
this pull request
Jul 7, 2025
…engine#2365) ### What does this PR do? Fix a regression from volcengine#1911, because the PR did not change the sglang async branch. CI did not catch this error because it only run 1 step, but this error happen in the second test. So I update the testcases to run 2 steps. To reproduce the bug, run test: TOTAL_TRAIN_STEPS=2 ENGINE=sglang ROLLOUT_MODE=async bash tests/special_e2e/ppo_trainer/run_function_reward.sh It fail with: ``` (WorkerDict pid=1257286) Total steps: 2, num_warmup_steps: 0 (WorkerDict pid=1257286) Actor use_remove_padding=True (WorkerDict pid=1257286) Actor use_fused_kernels=False (AsyncSglangServer pid=1260392) FastAPI listen on [192.168.111.48:40451](http://192.168.111.48:40451/) (WorkerDict pid=1257286) terminate called after throwing an instance of 'c10::Error' (WorkerDict pid=1257286) what(): CUDA error: an illegal memory access was encountered (WorkerDict pid=1257286) CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. (WorkerDict pid=1257286) For debugging consider passing CUDA_LAUNCH_BLOCKING=1 (WorkerDict pid=1257286) Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. (WorkerDict pid=1257286) (WorkerDict pid=1257286) Exception raised from c10_cuda_check_implementation at /pytorch/c10/cuda/CUDAException.cpp:43 (most recent call first): (WorkerDict pid=1257286) frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x96 (0x7fbf6036c1b6 in /usr/local/lib/python3.10/dist-packages/torch/lib/[libc10.so](http://libc10.so/)) (WorkerDict pid=1257286) frame volcengine#1: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::string const&) + 0x64 (0x7fbf60315a76 in /usr/local/lib/python3.10/dist-packages/torch/lib/[libc10.so](http://libc10.so/)) (WorkerDict pid=1257286) frame volcengine#2: c10::cuda::c10_cuda_check_implementation(int, char const*, char const*, int, bool) + 0x118 (0x7fbf6080d918 in ``` ### Checklist Before Starting - [X] Search for similar PRs. Paste at least one query link here: https://github.com/volcengine/verl/issues?q=is%3Aissue%20state%3Aopen%20an%20illegal%20memory%20access%20was%20encountered - [X] Format the PR title as `[{modules}] {type}: {description}` (This will be checked by the CI) - `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data` - If this PR involves multiple modules, separate them with `,` like `[megatron, fsdp, doc]` - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test` - If this PR breaks any API (CLI arguments, config, function signature, etc.), add `[BREAKING]` to the beginning of the title. - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching` ### Test ``` (TaskRunner pid=1647269) step:2 - global_seqlen/min:13075 - global_seqlen/max:14837 - global_seqlen/minmax_diff:1762 - global_seqlen/balanced_min:14231 - global_seqlen/balanced_max:14232 - global_seqlen/mean:14231.5 - actor/entropy:2.0606913566589355 - critic/vf_loss:8.7157882153 ``` ### API and Usage Example > Demonstrate how the API changes if any, and provide usage example(s) if possible. ```python # Add code snippet or script demonstrating how to use this ``` ### High-Level Design > Demonstrate the high-level design if this PR is complex. ### Specific Changes > List the specific changes. ### Checklist Before Submitting > [!IMPORTANT] > Please check all the following items before requesting a review, otherwise the reviewer might deprioritize this PR for review. - [X] Read the [Contribute Guide](https://github.com/volcengine/verl?tab=readme-ov-file#contribution-guide). - [ X] Apply [pre-commit checks](https://github.com/volcengine/verl?tab=readme-ov-file#code-linting-and-formatting): `pre-commit install && pre-commit run --all-files --show-diff-on-failure --color=always` - [X] Add / Update [the documentation](https://github.com/volcengine/verl/tree/main/docs). - [X] Add unit or end-to-end test(s) to [the CI workflow](https://github.com/volcengine/verl/tree/main/.github/workflows) to cover all the code. If not feasible, explain why: ... - [X] Once your PR is ready for CI, send a message in [the `ci-request` channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the `verl` Slack workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
lkc233
pushed a commit
to lkc233/verl
that referenced
this pull request
Jul 10, 2025
…engine#2365) ### What does this PR do? Fix a regression from volcengine#1911, because the PR did not change the sglang async branch. CI did not catch this error because it only run 1 step, but this error happen in the second test. So I update the testcases to run 2 steps. To reproduce the bug, run test: TOTAL_TRAIN_STEPS=2 ENGINE=sglang ROLLOUT_MODE=async bash tests/special_e2e/ppo_trainer/run_function_reward.sh It fail with: ``` (WorkerDict pid=1257286) Total steps: 2, num_warmup_steps: 0 (WorkerDict pid=1257286) Actor use_remove_padding=True (WorkerDict pid=1257286) Actor use_fused_kernels=False (AsyncSglangServer pid=1260392) FastAPI listen on [192.168.111.48:40451](http://192.168.111.48:40451/) (WorkerDict pid=1257286) terminate called after throwing an instance of 'c10::Error' (WorkerDict pid=1257286) what(): CUDA error: an illegal memory access was encountered (WorkerDict pid=1257286) CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. (WorkerDict pid=1257286) For debugging consider passing CUDA_LAUNCH_BLOCKING=1 (WorkerDict pid=1257286) Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. (WorkerDict pid=1257286) (WorkerDict pid=1257286) Exception raised from c10_cuda_check_implementation at /pytorch/c10/cuda/CUDAException.cpp:43 (most recent call first): (WorkerDict pid=1257286) frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x96 (0x7fbf6036c1b6 in /usr/local/lib/python3.10/dist-packages/torch/lib/[libc10.so](http://libc10.so/)) (WorkerDict pid=1257286) frame volcengine#1: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::string const&) + 0x64 (0x7fbf60315a76 in /usr/local/lib/python3.10/dist-packages/torch/lib/[libc10.so](http://libc10.so/)) (WorkerDict pid=1257286) frame volcengine#2: c10::cuda::c10_cuda_check_implementation(int, char const*, char const*, int, bool) + 0x118 (0x7fbf6080d918 in ``` ### Checklist Before Starting - [X] Search for similar PRs. Paste at least one query link here: https://github.com/volcengine/verl/issues?q=is%3Aissue%20state%3Aopen%20an%20illegal%20memory%20access%20was%20encountered - [X] Format the PR title as `[{modules}] {type}: {description}` (This will be checked by the CI) - `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data` - If this PR involves multiple modules, separate them with `,` like `[megatron, fsdp, doc]` - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test` - If this PR breaks any API (CLI arguments, config, function signature, etc.), add `[BREAKING]` to the beginning of the title. - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching` ### Test ``` (TaskRunner pid=1647269) step:2 - global_seqlen/min:13075 - global_seqlen/max:14837 - global_seqlen/minmax_diff:1762 - global_seqlen/balanced_min:14231 - global_seqlen/balanced_max:14232 - global_seqlen/mean:14231.5 - actor/entropy:2.0606913566589355 - critic/vf_loss:8.7157882153 ``` ### API and Usage Example > Demonstrate how the API changes if any, and provide usage example(s) if possible. ```python # Add code snippet or script demonstrating how to use this ``` ### High-Level Design > Demonstrate the high-level design if this PR is complex. ### Specific Changes > List the specific changes. ### Checklist Before Submitting > [!IMPORTANT] > Please check all the following items before requesting a review, otherwise the reviewer might deprioritize this PR for review. - [X] Read the [Contribute Guide](https://github.com/volcengine/verl?tab=readme-ov-file#contribution-guide). - [ X] Apply [pre-commit checks](https://github.com/volcengine/verl?tab=readme-ov-file#code-linting-and-formatting): `pre-commit install && pre-commit run --all-files --show-diff-on-failure --color=always` - [X] Add / Update [the documentation](https://github.com/volcengine/verl/tree/main/docs). - [X] Add unit or end-to-end test(s) to [the CI workflow](https://github.com/volcengine/verl/tree/main/.github/workflows) to cover all the code. If not feasible, explain why: ... - [X] Once your PR is ready for CI, send a message in [the `ci-request` channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the `verl` Slack workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
pillumina
pushed a commit
to pillumina/verl
that referenced
this pull request
Jul 24, 2025
更新fsdp重计算修复及生成打印功能
oseyosey
pushed a commit
to oseyosey/verl
that referenced
this pull request
Jul 28, 2025
…engine#2365) ### What does this PR do? Fix a regression from volcengine#1911, because the PR did not change the sglang async branch. CI did not catch this error because it only run 1 step, but this error happen in the second test. So I update the testcases to run 2 steps. To reproduce the bug, run test: TOTAL_TRAIN_STEPS=2 ENGINE=sglang ROLLOUT_MODE=async bash tests/special_e2e/ppo_trainer/run_function_reward.sh It fail with: ``` (WorkerDict pid=1257286) Total steps: 2, num_warmup_steps: 0 (WorkerDict pid=1257286) Actor use_remove_padding=True (WorkerDict pid=1257286) Actor use_fused_kernels=False (AsyncSglangServer pid=1260392) FastAPI listen on [192.168.111.48:40451](http://192.168.111.48:40451/) (WorkerDict pid=1257286) terminate called after throwing an instance of 'c10::Error' (WorkerDict pid=1257286) what(): CUDA error: an illegal memory access was encountered (WorkerDict pid=1257286) CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. (WorkerDict pid=1257286) For debugging consider passing CUDA_LAUNCH_BLOCKING=1 (WorkerDict pid=1257286) Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. (WorkerDict pid=1257286) (WorkerDict pid=1257286) Exception raised from c10_cuda_check_implementation at /pytorch/c10/cuda/CUDAException.cpp:43 (most recent call first): (WorkerDict pid=1257286) frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x96 (0x7fbf6036c1b6 in /usr/local/lib/python3.10/dist-packages/torch/lib/[libc10.so](http://libc10.so/)) (WorkerDict pid=1257286) frame volcengine#1: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::string const&) + 0x64 (0x7fbf60315a76 in /usr/local/lib/python3.10/dist-packages/torch/lib/[libc10.so](http://libc10.so/)) (WorkerDict pid=1257286) frame volcengine#2: c10::cuda::c10_cuda_check_implementation(int, char const*, char const*, int, bool) + 0x118 (0x7fbf6080d918 in ``` ### Checklist Before Starting - [X] Search for similar PRs. Paste at least one query link here: https://github.com/volcengine/verl/issues?q=is%3Aissue%20state%3Aopen%20an%20illegal%20memory%20access%20was%20encountered - [X] Format the PR title as `[{modules}] {type}: {description}` (This will be checked by the CI) - `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data` - If this PR involves multiple modules, separate them with `,` like `[megatron, fsdp, doc]` - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test` - If this PR breaks any API (CLI arguments, config, function signature, etc.), add `[BREAKING]` to the beginning of the title. - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching` ### Test ``` (TaskRunner pid=1647269) step:2 - global_seqlen/min:13075 - global_seqlen/max:14837 - global_seqlen/minmax_diff:1762 - global_seqlen/balanced_min:14231 - global_seqlen/balanced_max:14232 - global_seqlen/mean:14231.5 - actor/entropy:2.0606913566589355 - critic/vf_loss:8.7157882153 ``` ### API and Usage Example > Demonstrate how the API changes if any, and provide usage example(s) if possible. ```python # Add code snippet or script demonstrating how to use this ``` ### High-Level Design > Demonstrate the high-level design if this PR is complex. ### Specific Changes > List the specific changes. ### Checklist Before Submitting > [!IMPORTANT] > Please check all the following items before requesting a review, otherwise the reviewer might deprioritize this PR for review. - [X] Read the [Contribute Guide](https://github.com/volcengine/verl?tab=readme-ov-file#contribution-guide). - [ X] Apply [pre-commit checks](https://github.com/volcengine/verl?tab=readme-ov-file#code-linting-and-formatting): `pre-commit install && pre-commit run --all-files --show-diff-on-failure --color=always` - [X] Add / Update [the documentation](https://github.com/volcengine/verl/tree/main/docs). - [X] Add unit or end-to-end test(s) to [the CI workflow](https://github.com/volcengine/verl/tree/main/.github/workflows) to cover all the code. If not feasible, explain why: ... - [X] Once your PR is ready for CI, send a message in [the `ci-request` channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the `verl` Slack workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
Juniper1021
pushed a commit
to Juniper1021/verl
that referenced
this pull request
Aug 7, 2025
…engine#2365) ### What does this PR do? Fix a regression from volcengine#1911, because the PR did not change the sglang async branch. CI did not catch this error because it only run 1 step, but this error happen in the second test. So I update the testcases to run 2 steps. To reproduce the bug, run test: TOTAL_TRAIN_STEPS=2 ENGINE=sglang ROLLOUT_MODE=async bash tests/special_e2e/ppo_trainer/run_function_reward.sh It fail with: ``` (WorkerDict pid=1257286) Total steps: 2, num_warmup_steps: 0 (WorkerDict pid=1257286) Actor use_remove_padding=True (WorkerDict pid=1257286) Actor use_fused_kernels=False (AsyncSglangServer pid=1260392) FastAPI listen on [192.168.111.48:40451](http://192.168.111.48:40451/) (WorkerDict pid=1257286) terminate called after throwing an instance of 'c10::Error' (WorkerDict pid=1257286) what(): CUDA error: an illegal memory access was encountered (WorkerDict pid=1257286) CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. (WorkerDict pid=1257286) For debugging consider passing CUDA_LAUNCH_BLOCKING=1 (WorkerDict pid=1257286) Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. (WorkerDict pid=1257286) (WorkerDict pid=1257286) Exception raised from c10_cuda_check_implementation at /pytorch/c10/cuda/CUDAException.cpp:43 (most recent call first): (WorkerDict pid=1257286) frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x96 (0x7fbf6036c1b6 in /usr/local/lib/python3.10/dist-packages/torch/lib/[libc10.so](http://libc10.so/)) (WorkerDict pid=1257286) frame volcengine#1: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::string const&) + 0x64 (0x7fbf60315a76 in /usr/local/lib/python3.10/dist-packages/torch/lib/[libc10.so](http://libc10.so/)) (WorkerDict pid=1257286) frame volcengine#2: c10::cuda::c10_cuda_check_implementation(int, char const*, char const*, int, bool) + 0x118 (0x7fbf6080d918 in ``` ### Checklist Before Starting - [X] Search for similar PRs. Paste at least one query link here: https://github.com/volcengine/verl/issues?q=is%3Aissue%20state%3Aopen%20an%20illegal%20memory%20access%20was%20encountered - [X] Format the PR title as `[{modules}] {type}: {description}` (This will be checked by the CI) - `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data` - If this PR involves multiple modules, separate them with `,` like `[megatron, fsdp, doc]` - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test` - If this PR breaks any API (CLI arguments, config, function signature, etc.), add `[BREAKING]` to the beginning of the title. - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching` ### Test ``` (TaskRunner pid=1647269) step:2 - global_seqlen/min:13075 - global_seqlen/max:14837 - global_seqlen/minmax_diff:1762 - global_seqlen/balanced_min:14231 - global_seqlen/balanced_max:14232 - global_seqlen/mean:14231.5 - actor/entropy:2.0606913566589355 - critic/vf_loss:8.7157882153 ``` ### API and Usage Example > Demonstrate how the API changes if any, and provide usage example(s) if possible. ```python # Add code snippet or script demonstrating how to use this ``` ### High-Level Design > Demonstrate the high-level design if this PR is complex. ### Specific Changes > List the specific changes. ### Checklist Before Submitting > [!IMPORTANT] > Please check all the following items before requesting a review, otherwise the reviewer might deprioritize this PR for review. - [X] Read the [Contribute Guide](https://github.com/volcengine/verl?tab=readme-ov-file#contribution-guide). - [ X] Apply [pre-commit checks](https://github.com/volcengine/verl?tab=readme-ov-file#code-linting-and-formatting): `pre-commit install && pre-commit run --all-files --show-diff-on-failure --color=always` - [X] Add / Update [the documentation](https://github.com/volcengine/verl/tree/main/docs). - [X] Add unit or end-to-end test(s) to [the CI workflow](https://github.com/volcengine/verl/tree/main/.github/workflows) to cover all the code. If not feasible, explain why: ... - [X] Once your PR is ready for CI, send a message in [the `ci-request` channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the `verl` Slack workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
ziqi-wlb
added a commit
to ziqi-wlb/async-rl
that referenced
this pull request
Aug 29, 2025
…ate-machine and add red-moe model (volcengine#1) * add xdg ulysses * add grpo scripts * 适配redmoe+mcore by光速 * Bump from guangsu * [feat] Add async-rl with param-sync and async-pipeline Add state-machine for async-rl Add async param-update overlap with logp and generate * Update README * Refine code * rebase to main * add offload-grad for megatron-worker * Refine code * Refine code * Refine code --------- Co-authored-by: zuijiang <[email protected]> Co-authored-by: root <[email protected]> Co-authored-by: weishi <[email protected]>
whatadayG
pushed a commit
to whatadayG/verl
that referenced
this pull request
Sep 5, 2025
…engine#2365) ### What does this PR do? Fix a regression from volcengine#1911, because the PR did not change the sglang async branch. CI did not catch this error because it only run 1 step, but this error happen in the second test. So I update the testcases to run 2 steps. To reproduce the bug, run test: TOTAL_TRAIN_STEPS=2 ENGINE=sglang ROLLOUT_MODE=async bash tests/special_e2e/ppo_trainer/run_function_reward.sh It fail with: ``` (WorkerDict pid=1257286) Total steps: 2, num_warmup_steps: 0 (WorkerDict pid=1257286) Actor use_remove_padding=True (WorkerDict pid=1257286) Actor use_fused_kernels=False (AsyncSglangServer pid=1260392) FastAPI listen on [192.168.111.48:40451](http://192.168.111.48:40451/) (WorkerDict pid=1257286) terminate called after throwing an instance of 'c10::Error' (WorkerDict pid=1257286) what(): CUDA error: an illegal memory access was encountered (WorkerDict pid=1257286) CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. (WorkerDict pid=1257286) For debugging consider passing CUDA_LAUNCH_BLOCKING=1 (WorkerDict pid=1257286) Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. (WorkerDict pid=1257286) (WorkerDict pid=1257286) Exception raised from c10_cuda_check_implementation at /pytorch/c10/cuda/CUDAException.cpp:43 (most recent call first): (WorkerDict pid=1257286) frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x96 (0x7fbf6036c1b6 in /usr/local/lib/python3.10/dist-packages/torch/lib/[libc10.so](http://libc10.so/)) (WorkerDict pid=1257286) frame volcengine#1: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::string const&) + 0x64 (0x7fbf60315a76 in /usr/local/lib/python3.10/dist-packages/torch/lib/[libc10.so](http://libc10.so/)) (WorkerDict pid=1257286) frame volcengine#2: c10::cuda::c10_cuda_check_implementation(int, char const*, char const*, int, bool) + 0x118 (0x7fbf6080d918 in ``` ### Checklist Before Starting - [X] Search for similar PRs. Paste at least one query link here: https://github.com/volcengine/verl/issues?q=is%3Aissue%20state%3Aopen%20an%20illegal%20memory%20access%20was%20encountered - [X] Format the PR title as `[{modules}] {type}: {description}` (This will be checked by the CI) - `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data` - If this PR involves multiple modules, separate them with `,` like `[megatron, fsdp, doc]` - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test` - If this PR breaks any API (CLI arguments, config, function signature, etc.), add `[BREAKING]` to the beginning of the title. - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching` ### Test ``` (TaskRunner pid=1647269) step:2 - global_seqlen/min:13075 - global_seqlen/max:14837 - global_seqlen/minmax_diff:1762 - global_seqlen/balanced_min:14231 - global_seqlen/balanced_max:14232 - global_seqlen/mean:14231.5 - actor/entropy:2.0606913566589355 - critic/vf_loss:8.7157882153 ``` ### API and Usage Example > Demonstrate how the API changes if any, and provide usage example(s) if possible. ```python # Add code snippet or script demonstrating how to use this ``` ### High-Level Design > Demonstrate the high-level design if this PR is complex. ### Specific Changes > List the specific changes. ### Checklist Before Submitting > [!IMPORTANT] > Please check all the following items before requesting a review, otherwise the reviewer might deprioritize this PR for review. - [X] Read the [Contribute Guide](https://github.com/volcengine/verl?tab=readme-ov-file#contribution-guide). - [ X] Apply [pre-commit checks](https://github.com/volcengine/verl?tab=readme-ov-file#code-linting-and-formatting): `pre-commit install && pre-commit run --all-files --show-diff-on-failure --color=always` - [X] Add / Update [the documentation](https://github.com/volcengine/verl/tree/main/docs). - [X] Add unit or end-to-end test(s) to [the CI workflow](https://github.com/volcengine/verl/tree/main/.github/workflows) to cover all the code. If not feasible, explain why: ... - [X] Once your PR is ready for CI, send a message in [the `ci-request` channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the `verl` Slack workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
4 tasks
tianhangzhu
pushed a commit
to lyfegame/verl
that referenced
this pull request
Sep 6, 2025
added tokenization caching to orchestrator_coding_agent_loop
4 tasks
4 tasks
4 tasks
4 tasks
4 tasks
4 tasks
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.