Skip to content

[perf, data] feat: DP workload balance #202

[perf, data] feat: DP workload balance

[perf, data] feat: DP workload balance #202

# # Tests layout
# Each folder under tests/ corresponds to a test category for a sub-namespace in verl. For instance:
# - `tests/trainer` for testing functionality related to `verl/trainer`
# - `tests/models` for testing functionality related to `verl/models`
# - ...
# There are a few folders with `special_` prefix, created for special purposes:
# - `special_distributed`: unit tests that must run with multiple GPUs
# - `special_e2e`: end-to-end tests with training/generation scripts
# - `special_npu`: tests for NPUs
# - `special_sanity`: a suite of quick sanity tests
# - `special_standalone`: a set of test that are designed to run in dedicated environments
# Accelerators for tests
# - By default tests are run with GPU available, except for the ones under `special_npu`, and any test script whose name ends with `on_cpu.py`.
# - For test scripts with `on_cpu.py` name suffix would be tested on CPU resources in linux environment.
# # Workflow layout
# All CI tests are configured by yaml files in `.github/workflows/`. Here's an overview of all test configs:
# 1. A list of always triggered CPU sanity tests: `check-pr-title.yml`, `secrets_scan.yml`, `check-pr-title,yml`, `pre-commit.yml`, `doc.yml`
# 2. Some heavy multi-GPU unit tests, such as `model.yml`, `vllm.yml`, `sgl.yml`
# 3. End-to-end tests: `e2e_*.yml`
# 4. Unit tests
# - `cpu_unit_tests.yml`, run pytest on all scripts with file name pattern `tests/**/test_*_on_cpu.py`
# - `gpu_unit_tests.yml`, run pytest on all scripts with file without the `on_cpu.py` suffix.
# - Since cpu/gpu unit tests by default runs all tests under `tests`, please make sure tests are manually excluded in them when
# - new workflow yaml is added to `.github/workflows`
# - new tests are added to workflow mentioned in 2.
name: e2e_ppo_trainer_megatron_vllm_2
on:
# Trigger the workflow on push or pull request,
# but only for the main branch.
# For push, for now only anti-patterns are specified so it is more conservative
# and achieves higher coverage.
push:
branches:
- main
- v0.*
paths:
- "**/*.py"
# Other entrypoints
- "!verl/trainer/fsdp_sft_trainer.py"
# Recipes
- "!recipe/**"
# FSDP
- "!verl/workers/**/*dp_*.py"
pull_request:
branches:
- main
- v0.*
paths:
- "**/*.py"
# Other entrypoints
- "!docker/**"
# Docs
- "!**/*.md"
- "!docs/**"
- "!examples/**"
- "!tests/**"
- "!verl/trainer/main_*.py"
- "!verl/trainer/fsdp_sft_trainer.py"
# Recipes
- "!recipe/**"
# FSDP
- "!verl/workers/**/*dp_*.py"
# Entrypoints
- ".github/workflows/e2e_ppo_trainer_megatron_vllm.yml"
- "examples/data_preprocess/gsm8k.py"
- "examples/data_preprocess/geo3k.py"
- "tests/special_e2e/run_ppo_trainer_megatron.sh"
- "verl/trainer/main_ppo.py"
- "verl/trainer/config/ppo_megatron_trainer.yaml"
# Cancel jobs on the same ref if a new one is triggered
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: ${{ github.ref != 'refs/heads/main' }}
# Declare permissions just read content.
permissions:
contents: read
env:
IMAGE: "verl-ci-cn-beijing.cr.volces.com/verlai/verl:app-verl0.5-transformers4.55.4-vllm0.10.0-mcore0.13.0-te2.2"
DYNAMIC_RUNNER_ENDPOINT: "https://sd10g3clalm04ug7alq90.apigateway-cn-beijing.volceapi.com/runner"
TRANSFORMERS_VERSION: "4.56.2"
jobs:
setup:
if: github.repository_owner == 'volcengine'
runs-on: ubuntu-latest
outputs:
runner-label: ${{ steps.create-runner.outputs.runner-label }}
mlp-task-id: ${{ steps.create-runner.outputs.mlp-task-id }}
steps:
- uses: actions/checkout@v4
- id: create-runner
uses: volcengine/vemlp-github-runner@v1
with:
mode: "create"
faas-url: "${{ env.DYNAMIC_RUNNER_ENDPOINT }}"
mlp-image: "${{ env.IMAGE }}"
e2e_ppo_trainer_megatron-deepseek-override-transformer-config:
needs: setup
runs-on: ["${{ needs.setup.outputs.runner-label || 'L20x8' }}"]
timeout-minutes: 60 # Increase this timeout value as needed
env:
HTTP_PROXY: ${{ secrets.PROXY_HTTP }}
HTTPS_PROXY: ${{ secrets.PROXY_HTTPS }}
NO_PROXY: "localhost,127.0.0.1,hf-mirror.com"
HF_ENDPOINT: "https://hf-mirror.com"
HF_HUB_ENABLE_HF_TRANSFER: "0" # This is more stable
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
with:
fetch-depth: 0
- name: Install the current repository
run: |
pip3 install --no-deps -e .[test]
pip3 install transformers==$TRANSFORMERS_VERSION
- name: Prepare GSM8K dataset
run: |
python3 examples/data_preprocess/gsm8k.py --local_dataset_path ${HOME}/models/hf_data/gsm8k
- name: Running GSM8K E2E training tests with 3D parallelism on 8 L20 GPUs with Megatron (DeepSeek)
run: |
ray stop --force
SAVE_FREQ=1 MODEL_ID=deepseek-ai/deepseek-coder-1.3b-instruct COMMON_PP=2 COMMON_VPP=null bash tests/special_e2e/run_ppo_trainer_megatron.sh +actor_rollout_ref.actor.megatron.override_transformer_config.account_for_embedding_in_pipeline_split=true +actor_rollout_ref.actor.megatron.override_transformer_config.account_for_loss_in_pipeline_split=true
- name: Test Megatron checkpoints merging function (DeepSeek Actor and Critic)
run: |
exp_name="deepseek-coder-1.3b-instruct-megatron-gsm8k-minimal"
python -m verl.model_merger test --backend megatron --local_dir checkpoints/verl-test/${exp_name}/global_step_1/actor --test_hf_dir checkpoints/verl-test/${exp_name}/global_step_1/actor/huggingface
python -m verl.model_merger test --backend megatron --is-value-model --local_dir checkpoints/verl-test/${exp_name}/global_step_1/critic --test_hf_dir checkpoints/verl-test/${exp_name}/global_step_1/critic/huggingface
- name: clean up
run: |
rm -rf checkpoints
e2e_ppo_trainer_megatron-moe-expert-parallel:
needs: setup
runs-on: ["${{ needs.setup.outputs.runner-label || 'L20x8' }}"]
timeout-minutes: 60 # Increase this timeout value as needed
env:
HTTP_PROXY: ${{ secrets.PROXY_HTTP }}
HTTPS_PROXY: ${{ secrets.PROXY_HTTPS }}
NO_PROXY: "localhost,127.0.0.1,hf-mirror.com"
HF_ENDPOINT: "https://hf-mirror.com"
HF_HUB_ENABLE_HF_TRANSFER: "0" # This is more stable
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
with:
fetch-depth: 0
- name: Install the current repository
run: |
pip3 install --no-deps -e .[test]
pip3 install mbridge
pip3 install transformers==$TRANSFORMERS_VERSION
- name: Prepare GSM8K dataset
run: |
python3 examples/data_preprocess/gsm8k.py --local_dataset_path ${HOME}/models/hf_data/gsm8k
- name: Running GSM8K E2E training tests with 3D parallelism on 8 L20 GPUs with Megatron (DeepSeek)
run: |
ray stop --force
ADV_ESTIMATOR=grpo USE_DUMMY_MODEL=True DUMMY_MODEL_CONFIG_PATH=tests/special_e2e/ppo_trainer/expert_parallel/qwen2moe_minimal.json \
PPO_MAX_TOKEN_LEN=512 FWD_MAX_TOKEN_LEN=512 \
MAX_PROMPT_LENGTH=256 MAX_RESPONSE_LENGTH=256 \
MODEL_ID=Qwen/Qwen1.5-MoE-A2.7B-Chat USE_MBRIDGE=True \
COMMON_PP=2 COMMON_VPP=null COMMON_CP=1 COMMON_TP=4 COMMON_EP=4 COMMON_ETP=1 INFER_TP=8 \
USE_DIST_CKPT=True ALL_OFFLOAD=True SKIP_SAVE_HF_MODEL=1 bash tests/special_e2e/run_ppo_trainer_megatron.sh
- name: clean up
run: |
rm -rf checkpoints
e2e_ppo_trainer_megatron-qwen2_5vl-3b:
needs: setup
runs-on: ["${{ needs.setup.outputs.runner-label || 'L20x8' }}"]
timeout-minutes: 60 # Increase this timeout value as needed
env:
HTTP_PROXY: ${{ secrets.PROXY_HTTP }}
HTTPS_PROXY: ${{ secrets.PROXY_HTTPS }}
NO_PROXY: "localhost,127.0.0.1,hf-mirror.com"
HF_ENDPOINT: "https://hf-mirror.com"
HF_HUB_ENABLE_HF_TRANSFER: "0" # This is more stable
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
with:
fetch-depth: 0
- name: Install the current repository
run: |
pip3 install --no-deps -e .[test]
pip3 install transformers==$TRANSFORMERS_VERSION
- name: Prepare Geo3k dataset
run: |
python3 examples/data_preprocess/geo3k.py --local_dataset_path ${HOME}/models/hf_data/hiyouga/geometry3k/
- name: Prepare dist_ckpt of Qwen2.5-VL-3B, only supports dist_ckpt
run: |
python3 scripts/converter_hf_to_mcore.py --hf_model_path ${HOME}/models/Qwen/Qwen2.5-VL-3B-Instruct --output_path checkpoints/verl-test/qwen2.5-vl-3b-megatron
- name: Running Geo3k E2E training tests with 3D parallelism on 8 L20 GPUs with Megatron (Qwen)
run: |
ray stop --force
TRAIN_FILES=${HOME}/data/geo3k/train.parquet VAL_FILES=${HOME}/data/geo3k/test.parquet \
MAX_PROMPT_LENGTH=1024 MAX_RESPONSE_LENGTH=2048 MODEL_ID=Qwen/Qwen2.5-VL-3B-Instruct ADV_ESTIMATOR=grpo \
USE_DYNAMIC_BSZ=False USE_FUSED_KERNELS=True SKIP_SAVE_HF_MODEL=1 \
COMMON_PP=4 COMMON_VPP=null COMMON_CP=1 COMMON_TP=2 USE_DIST_CKPT=true \
DIST_CKPT_PATH=checkpoints/verl-test/qwen2.5-vl-3b-megatron bash tests/special_e2e/run_ppo_trainer_megatron.sh
- name: clean up
run: |
rm -rf checkpoints
e2e_ppo_trainer_vllm:
needs: setup
runs-on: [ "${{ needs.setup.outputs.runner-label || 'L20x8' }}" ]
timeout-minutes: 60 # Increase this timeout value as needed
env:
HTTP_PROXY: ${{ secrets.PROXY_HTTP }}
HTTPS_PROXY: ${{ secrets.PROXY_HTTPS }}
NO_PROXY: "localhost,127.0.0.1,hf-mirror.com"
HF_ENDPOINT: "https://hf-mirror.com"
HF_HUB_ENABLE_HF_TRANSFER: "0" # This is more stable
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
with:
fetch-depth: 0
- name: Install the current repository
run: |
pip3 install --no-deps -e .[test,vllm]
pip3 install transformers==$TRANSFORMERS_VERSION
- name: Prepare GSM8K dataset
run: |
ray stop --force
python3 examples/data_preprocess/gsm8k.py --local_dataset_path ${HOME}/models/hf_data/gsm8k
# HF sanity
# - name: Running GSM8K E2E training tests on 1 L20 GPU with hf for sanity
# run: |
# ray stop --force
# bash tests/special_e2e/ppo_trainer/run_single_gpu.sh
# # HF sanity
# - name: Running GSM8K E2E training tests on 1 L20 GPU with engine interface for sanity.
# run: |
# ray stop --force
# bash tests/special_e2e/ppo_trainer/run_single_gpu_with_engine.sh
# Function RM
- name: Running GSM8K E2E training tests on 8 L20 GPUs with rmpad using function rm with validation and saving (FSDP_SIZE=8)
run: |
ray stop --force
VAL_BEFORE_TRAIN=True TEST_FREQ=1 SAVE_FREQ=1 SAVE_HF_MODEL=True VERL_EXP_NAME="qwen2.5-0.5b-function-reward-minimal-fsdp-size8" bash tests/special_e2e/ppo_trainer/run_function_reward.sh
- name: Running GSM8K E2E training tests on 8 L20 GPUs with rmpad using function rm after resuming
run: |
ray stop --force
RESUME_MODE=auto VERL_EXP_NAME="qwen2.5-0.5b-function-reward-minimal-fsdp-size8" bash tests/special_e2e/ppo_trainer/run_function_reward.sh
- name: Test merging FSDP checkpoints (Qwen Actor)
run: |
exp_name="qwen2.5-0.5b-function-reward-minimal-fsdp-size8"
python -m verl.model_merger test --backend fsdp --local_dir checkpoints/verl-test/${exp_name}/global_step_1/actor --test_hf_dir checkpoints/verl-test/${exp_name}/global_step_1/actor/huggingface
- name: Running GSM8K E2E training tests on 8 L20 GPUs with rmpad using function rm with validation and saving (DDP_SIZE=2, FSDP_SIZE=4)
run: |
ray stop --force
VAL_BEFORE_TRAIN=True TEST_FREQ=1 SAVE_FREQ=1 SAVE_HF_MODEL=True FSDP_SIZE=4 VERL_EXP_NAME="qwen2.5-0.5b-function-reward-minimal-ddp-size2-fsdp-size4" bash tests/special_e2e/ppo_trainer/run_function_reward.sh
- name: Test merging DDP+FSDP checkpoints (Qwen Actor)
run: |
exp_name="qwen2.5-0.5b-function-reward-minimal-ddp-size2-fsdp-size4"
python -m verl.model_merger test --backend fsdp --local_dir checkpoints/verl-test/${exp_name}/global_step_1/actor --test_hf_dir checkpoints/verl-test/${exp_name}/global_step_1/actor/huggingface
- name: Running GSM8K E2E training tests on 8 L20 GPUs with rmpad using function rm with validation and saving (FSDP2)
run: |
ray stop --force
VAL_BEFORE_TRAIN=True TEST_FREQ=1 SAVE_FREQ=1 SAVE_HF_MODEL=True VERL_EXP_NAME="qwen2.5-0.5b-function-reward-minimal-fsdp2-size8" STRATEGY=fsdp2 bash tests/special_e2e/ppo_trainer/run_function_reward.sh
- name: Test merging FSDP2 checkpoints (Qwen Actor)
run: |
exp_name="qwen2.5-0.5b-function-reward-minimal-fsdp2-size8"
python -m verl.model_merger test --backend fsdp --local_dir checkpoints/verl-test/${exp_name}/global_step_1/actor --test_hf_dir checkpoints/verl-test/${exp_name}/global_step_1/actor/huggingface
- name: Running GSM8K E2E without rmpad using function rm
run: |
ray stop --force
RM_PAD=False bash tests/special_e2e/ppo_trainer/run_function_reward.sh
- name: Running GSM8K E2E training tests on 8 L20 GPUs with rmpad using function rm (GRPO)
run: |
ray stop --force
ADV_ESTIMATOR=grpo USE_KL=True bash tests/special_e2e/ppo_trainer/run_function_reward.sh
- name: Running GSM8K E2E training tests on 8 L20 GPUs with rmpad using function rm (ReMax)
run: |
ray stop --force
ADV_ESTIMATOR=remax USE_KL=True bash tests/special_e2e/ppo_trainer/run_function_reward.sh
- name: Running GSM8K E2E training tests on 8 L20 GPUs with rmpad using customized reward function
run: |
ray stop --force
CUSTOM_REWARD_FN=True bash tests/special_e2e/ppo_trainer/run_function_reward.sh
- name: Running GSM8K E2E training tests on 8 L20 GPUs with rmpad using function rm with in-reward kl and kl loss
run: |
ray stop --force
USE_KL=True bash tests/special_e2e/ppo_trainer/run_function_reward.sh
# LoRA tests
- name: Running GSM8K E2E training tests on 8 L20 GPUs with grpo lora using function rm with use_shm
run: |
ray stop --force
ADV_ESTIMATOR=grpo USE_SHM=True LORA_RANK=32 LOAD_FORMAT=safetensors bash tests/special_e2e/ppo_trainer/run_function_reward.sh
- name: Running GSM8K E2E training tests on 8 L20 GPUs with grpo lora using function rm with use_shm and layered_summon
run: |
ray stop --force
ADV_ESTIMATOR=grpo USE_SHM=True LORA_RANK=32 LOAD_FORMAT=safetensors LAYERED_SUMMON=True TOTAL_TRAIN_STEPS=1 SAVE_FREQ=1 FSDP_SIZE=4 VERL_EXP_NAME="qwen2.5-0.5b-function-reward-minimal" bash tests/special_e2e/ppo_trainer/run_function_reward.sh
- name: Test GRPO LoRA checkpoints merging function
run: |
export EXP_NAME="qwen2.5-0.5b-function-reward-minimal"
ls checkpoints/verl-test/${EXP_NAME}/global_step_1/actor
cat checkpoints/verl-test/${EXP_NAME}/global_step_1/actor/huggingface/config.json
python3 -m verl.model_merger merge --backend fsdp --local_dir checkpoints/verl-test/${EXP_NAME}/global_step_1/actor/ --target_dir checkpoints/verl-test/${EXP_NAME}/global_step_1/actor/huggingface
- name: Running GSM8K E2E training tests on 8 L20 GPUs with grpo lora using function rm with use_shm and layered_summon with fsdp2
run: |
ray stop --force
ADV_ESTIMATOR=grpo USE_SHM=True LORA_RANK=32 LOAD_FORMAT=safetensors LAYERED_SUMMON=True STRATEGY=fsdp2 bash tests/special_e2e/ppo_trainer/run_function_reward.sh
# Model RM
- name: Running GRPO GSM8K E2E training tests with FSDP on 8 L20 GPUs (DeepSeek)
run: |
ray stop --force
MODEL_ID=deepseek-ai/deepseek-coder-1.3b-instruct bash tests/special_e2e/ppo_trainer/run_function_reward.sh
- name: Running GSM8K E2E with rmpad using model rm
run: |
ray stop --force
bash tests/special_e2e/ppo_trainer/run_model_reward.sh
- name: Running GSM8K E2E without rmpad using model rm
run: |
ray stop --force
RM_PAD=False bash tests/special_e2e/ppo_trainer/run_model_reward.sh
- name: Running GSM8K E2E with rmpad using model rm and ulysses sp=2
run: |
ray stop --force
SP_SIZE=2 bash tests/special_e2e/ppo_trainer/run_model_reward.sh
- name: Running GSM8K E2E with rmpad using model rm and dynamic batch size
run: |
ray stop --force
SEQ_BALANCE=True bash tests/special_e2e/ppo_trainer/run_model_reward.sh
- name: Running GSM8K E2E with rmpad using model rm with Liger Kernel enabled
run: |
ray stop --force
LIGER=True bash tests/special_e2e/ppo_trainer/run_model_reward.sh
- name: Running GSM8K E2E with rmpad using model rm with Fused Kernel enabled
run: |
ray stop --force
FUSED_KERNELS=True bash tests/special_e2e/ppo_trainer/run_model_reward.sh
- name: Running GSM8K E2E with rmpad using model rm with Fused Kernel enabled
run: |
ray stop --force
FUSED_KERNEL=True FUSED_KERNEL_BACKEND=triton bash tests/special_e2e/ppo_trainer/run_model_reward.sh
- name: Running GSM8K E2E training tests on vllm async
run: |
ray stop --force
export VLLM_USE_V1=1
ray start --head
TOTAL_TRAIN_STEPS=2 ENGINE=vllm ROLLOUT_MODE=async bash tests/special_e2e/ppo_trainer/run_function_reward.sh
e2e_ppo_trainer_vllm_vlm:
needs: setup
runs-on: [ "${{ needs.setup.outputs.runner-label || 'L20x8' }}" ]
timeout-minutes: 40 # Increase this timeout value as needed
env:
HTTP_PROXY: ${{ secrets.PROXY_HTTP }}
HTTPS_PROXY: ${{ secrets.PROXY_HTTPS }}
NO_PROXY: "localhost,127.0.0.1,hf-mirror.com"
HF_ENDPOINT: "https://hf-mirror.com"
HF_HUB_ENABLE_HF_TRANSFER: "0" # This is more stable
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
with:
fetch-depth: 0
- name: Install the current repository
run: |
pip3 install --no-deps -e .[test,gpu,vllm,geo,trl]
pip3 install transformers==$TRANSFORMERS_VERSION
# Geo3k
- name: Prepare GEO3K dataset
run: |
python3 examples/data_preprocess/geo3k.py --local_dataset_path ${HOME}/models/hf_data/hiyouga/geometry3k/
- name: Running GEO3K VLM GRPO E2E training tests on 8 L20 GPUs with rmpad using function rm
run: |
ray stop --force
TRAIN_FILES=$HOME/data/geo3k/train.parquet VAL_FILES=$HOME/data/geo3k/test.parquet \
MAX_PROMPT_LEN=1536 MAX_RESPONSE_LEN=1536 \
MODEL_ID=Qwen/Qwen2-VL-2B-Instruct \
ADV_ESTIMATOR=grpo RM_PAD=True USE_KL=True ENABLE_CHUNKED_PREFILL=False \
SP_SIZE=2 \
bash tests/special_e2e/ppo_trainer/run_function_reward.sh
- name: Running GEO3K VLM PPO E2E training tests on 8 L20 GPUs with rmpad using function rm
run: |
ray stop --force
TRAIN_FILES=$HOME/data/geo3k/train.parquet VAL_FILES=$HOME/data/geo3k/test.parquet \
MAX_PROMPT_LEN=1536 MAX_RESPONSE_LEN=1536 \
MODEL_ID=Qwen/Qwen2-VL-2B-Instruct \
ADV_ESTIMATOR=gae RM_PAD=True USE_KL=True ENABLE_CHUNKED_PREFILL=False \
SP_SIZE=2 \
bash tests/special_e2e/ppo_trainer/run_function_reward.sh
- name: Running GEO3K VLM GRPO E2E lora training tests on 8 L20 GPUs with rmpad using function rm
run: |
ray stop --force
TRAIN_FILES=$HOME/data/geo3k/train.parquet VAL_FILES=$HOME/data/geo3k/test.parquet \
MAX_PROMPT_LEN=1536 MAX_RESPONSE_LEN=1536 \
MODEL_ID=Qwen/Qwen2-VL-2B-Instruct \
ADV_ESTIMATOR=grpo RM_PAD=True USE_KL=True ENABLE_CHUNKED_PREFILL=False \
SP_SIZE=2 \
LORA_RANK=32 LORA_EXCLUDE=".*visual.*" \
bash tests/special_e2e/ppo_trainer/run_function_reward.sh
cleanup:
runs-on: ubuntu-latest
needs:
[
setup,
e2e_ppo_trainer_megatron-deepseek-override-transformer-config,
e2e_ppo_trainer_megatron-moe-expert-parallel,
e2e_ppo_trainer_megatron-qwen2_5vl-3b,
e2e_ppo_trainer_vllm,
e2e_ppo_trainer_vllm_vlm
]
if: always()
steps:
- id: destroy-runner
uses: volcengine/vemlp-github-runner@v1
with:
mode: "destroy"
faas-url: "${{ env.DYNAMIC_RUNNER_ENDPOINT }}"
mlp-task-id: "${{ needs.setup.outputs.mlp-task-id }}"