Skip to content

[megatron, worker] fix: use extract_multi_modal_inputs method for h… #6683

[megatron, worker] fix: use extract_multi_modal_inputs method for h…

[megatron, worker] fix: use extract_multi_modal_inputs method for h… #6683

Workflow file for this run

# # Tests layout
# Each folder under tests/ corresponds to a test category for a sub-namespace in verl. For instance:
# - `tests/trainer` for testing functionality related to `verl/trainer`
# - `tests/models` for testing functionality related to `verl/models`
# - ...
# There are a few folders with `special_` prefix, created for special purposes:
# - `special_distributed`: unit tests that must run with multiple GPUs
# - `special_e2e`: end-to-end tests with training/generation scripts
# - `special_npu`: tests for NPUs
# - `special_sanity`: a suite of quick sanity tests
# - `special_standalone`: a set of test that are designed to run in dedicated environments
# Accelerators for tests
# - By default tests are run with GPU available, except for the ones under `special_npu`, and any test script whose name ends with `on_cpu.py`.
# - For test scripts with `on_cpu.py` name suffix would be tested on CPU resources in linux environment.
# # Workflow layout
# All CI tests are configured by yaml files in `.github/workflows/`. Here's an overview of all test configs:
# 1. A list of always triggered CPU sanity tests: `check-pr-title.yml`, `secrets_scan.yml`, `check-pr-title,yml`, `pre-commit.yml`, `doc.yml`
# 2. Some heavy multi-GPU unit tests, such as `model.yml`, `vllm.yml`, `sgl.yml`
# 3. End-to-end tests: `e2e_*.yml`
# 4. Unit tests
# - `cpu_unit_tests.yml`, run pytest on all scripts with file name pattern `tests/**/test_*_on_cpu.py`
# - `gpu_unit_tests.yml`, run pytest on all scripts with file without the `on_cpu.py` suffix.
# - Since cpu/gpu unit tests by default runs all tests under `tests`, please make sure tests are manually excluded in them when
# - new workflow yaml is added to `.github/workflows`
# - new tests are added to workflow mentioned in 2.
name: e2e_ascend
on:
# Trigger the workflow on push or pull request,
# but only for the main branch
push:
branches:
- main
- v0.*
pull_request:
branches:
- main
paths:
- ".github/workflows/e2e_ascend.yml"
- "**/*.py"
- "docs/ascend_tutorial/**"
- "examples/**"
- "recipe/**"
- "tests/special_npu/**"
- "tests/special_sanity/**"
- "verl/**"
- "pyproject.toml"
- "requirements-npu.txt"
- "setup.py"
# Cancel jobs on the same ref if a new one is triggered
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: ${{ github.ref != 'refs/heads/main' }}
permissions:
contents: read
jobs:
test:
name: verl Ascend test (self-host)
runs-on: [self-hosted, npu-0]
timeout-minutes: 40 # Increase this timeout value as needed
container:
image: crispig/verl_npu:cann8.1rc1-py3.10-torch2.5.1-vllm-ascend0.7.3.post1-mindspeed0121-250731
volumes:
- /usr/local/dcmi:/usr/local/dcmi
- /usr/local/bin/npu-smi:/usr/local/bin/npu-smi
- /usr/local/Ascend/driver/lib64/:/usr/local/Ascend/driver/lib64/
- /usr/local/Ascend/driver/version.info:/usr/local/Ascend/driver/version.info
- /etc/ascend_install.info:/etc/ascend_install.info
- /data00/dataset:/github/home/dataset
- /data00/models:/github/home/models
# Use self-host cache speed up pip and model download
# - /home/action/actions-runner/_work/cache:/github/home/.cache/
options: >-
--device /dev/davinci0
--device /dev/davinci_manager
--device /dev/devmm_svm
--device /dev/hisi_hdc
--network host
--privileged
--shm-size 16g
env:
HTTP_PROXY: ${{ secrets.PROXY_HTTP }}
HTTPS_PROXY: ${{ secrets.PROXY_HTTPS }}
NO_PROXY: "localhost,127.0.0.1,hf-mirror.com"
HF_ENDPOINT: "https://hf-mirror.com"
HF_HUB_ENABLE_HF_TRANSFER: "0" # This is more stable
steps:
- name: Check npu and CANN info
run: |
cat /usr/local/Ascend/ascend-toolkit/latest/"$(uname -i)"-linux/ascend_toolkit_install.info
npu-smi info
- name: Checkout volcengine/verl repo
uses: actions/checkout@v4
- name: Install the current repository
run: |
pip3 install hf_transfer peft
pip3 install -r requirements-npu.txt
pip install -e .
- name: Install torchvision
run: |
pip install torchvision==0.20.1+cpu --index-url https://download.pytorch.org/whl/cpu
- name: Uninstall Triton
run: |
pip uninstall -y triton
- name: Preprocess gsm8k dataset
run: |
python examples/data_preprocess/gsm8k.py --local_dataset_path ${HOME}/dataset/openai/gsm8k
- name: Preprocess geo3k dataset
run: |
python examples/data_preprocess/geo3k.py --local_dataset_path ${HOME}/dataset/hiyouga/geometry3k
- name: Running gsm8k e2e qwen3 training tests with PPO on ASCEND NPU
run: |
ray stop --force
bash tests/special_npu/run_qwen3_06b_ppo.sh
rm -rf $HOME/ckpts
- name: Running gsm8k e2e training tests with peft sft on ASCEND NPU
run: |
ray stop --force
bash tests/special_npu/run_qwen2_5_05b_sft_peft_sp2.sh
rm -rf $HOME/ckpts
- name: Running gsm8k e2e training tests with GRPO on ASCEND NPU
run: |
ray stop --force
bash tests/special_npu/run_qwen2_5_05b_grpo.sh
rm -rf $HOME/ckpts
- name: Running geo3k e2e training tests with GRPO on ASCEND NPU
run: |
ray stop --force
bash tests/special_npu/run_qwen2_5_vl_3b_npu.sh
rm -rf $HOME/ckpts
- name: Running gsm8k e2e training tests with DAPO on ASCEND NPU
run: |
ray stop --force
bash tests/special_npu/run_qwen2_5_05b_dapo.sh
rm -rf $HOME/ckpts
- name: Running gsm8k e2e training tests with GRPO MindSpeed on ASCEND NPU
run: |
ray stop --force
USE_DIST_CKPT=True bash tests/special_npu/run_qwen2_5_05b_grpo_mindspeed.sh
rm -rf $HOME/dist_ckpt/qwen2_5_05b_grpo_mindspeed
rm -rf $HOME/ckpts
- name: Running NPU profiling unit tests
run: |
ray stop --force
pytest -s -x tests/utils/test_special_mstx_profile.py