Skip to content

[Hardware][CPU] Vllm int8 quantization enablement for ARM CPU #14129

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jul 10, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 24 additions & 4 deletions cmake/cpu_extension.cmake
Original file line number Diff line number Diff line change
Expand Up @@ -165,17 +165,32 @@ else()
endif()

#
# Build oneDNN for W8A8 GEMM kernels (only for x86-AVX512 platforms)
#
if (AVX512_FOUND AND NOT AVX512_DISABLED)
# Build oneDNN for W8A8 GEMM kernels (only for x86-AVX512 /ARM platforms)
# Flag to enable ACL kernels for AARCH64 platforms
if ( VLLM_BUILD_ACL STREQUAL "ON")
set(USE_ACL ON)
else()
set(USE_ACL OFF)
endif()

if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR ASIMD_FOUND)
FetchContent_Declare(
oneDNN
GIT_REPOSITORY https://github.com/oneapi-src/oneDNN.git
GIT_TAG v3.7.1
GIT_TAG v3.8.1
GIT_PROGRESS TRUE
GIT_SHALLOW TRUE
)

if(USE_ACL)
find_library(ARM_COMPUTE_LIBRARY NAMES arm_compute PATHS $ENV{ACL_ROOT_DIR}/build/)
if(NOT ARM_COMPUTE_LIBRARY)
message(FATAL_ERROR "Could not find ARM Compute Library: please set ACL_ROOT_DIR")
endif()
set(ONEDNN_AARCH64_USE_ACL "ON")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wl,-rpath,$ENV{ACL_ROOT_DIR}/build/")
endif()

set(ONEDNN_LIBRARY_TYPE "STATIC")
set(ONEDNN_BUILD_DOC "OFF")
set(ONEDNN_BUILD_EXAMPLES "OFF")
Expand Down Expand Up @@ -264,6 +279,11 @@ elseif(POWER10_FOUND)
"csrc/cpu/quant.cpp"
${VLLM_EXT_SRC})
endif()
if (ASIMD_FOUND)
set(VLLM_EXT_SRC
"csrc/cpu/quant.cpp"
${VLLM_EXT_SRC})
endif()

message(STATUS "CPU extension source files: ${VLLM_EXT_SRC}")

Expand Down
267 changes: 264 additions & 3 deletions csrc/cpu/cpu_types_arm.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,8 @@ namespace vec_op {
#endif

#define FORCE_INLINE __attribute__((always_inline)) inline
// Number of elements in single ASIMD vector of given Datatype
#define NUM_ELEMENTS_REG(vec) (sizeof(vec) / sizeof(vec[0]))

namespace {
template <typename T, T... indexes, typename F>
Expand Down Expand Up @@ -86,8 +88,8 @@ struct FP16Vec16 : public Vec<FP16Vec16> {
}

void save(void* ptr, const int elem_num) const {
int full_blocks = elem_num / 8;
int remainder = elem_num % 8;
int full_blocks = elem_num / NUM_ELEMENTS_REG(reg.val[0]);
int remainder = elem_num % NUM_ELEMENTS_REG(reg.val[0]);

if (full_blocks > 0) {
vst1q_f16(reinterpret_cast<__fp16*>(ptr), reg.val[0]);
Expand Down Expand Up @@ -197,6 +199,25 @@ struct BF16Vec16 : public Vec<BF16Vec16> {
vcvtq_high_bf16_f32(vcvtq_low_bf16_f32(v.val[2]), v.val[3])}) {};

void save(void* ptr) const { *reinterpret_cast<bfloat16x8x2_t*>(ptr) = reg; };
void save(void* ptr, const int elem_num) const {
int full_blocks = elem_num / NUM_ELEMENTS_REG(reg.val[0]);
int remainder = elem_num % NUM_ELEMENTS_REG(reg.val[0]);
for (int i = 0; i < full_blocks; i++)
vst1q_bf16(
reinterpret_cast<__bf16*>(ptr) + NUM_ELEMENTS_REG(reg.val[0]) * i,
reg.val[i]);
if (remainder > 0) {
bfloat16x8_t temp = reg.val[full_blocks];
bfloat16_t* base = reinterpret_cast<bfloat16_t*>(ptr) + full_blocks * 8;
if (remainder > 0) base[0] = vgetq_lane_bf16(temp, 0);
if (remainder > 1) base[1] = vgetq_lane_bf16(temp, 1);
if (remainder > 2) base[2] = vgetq_lane_bf16(temp, 2);
if (remainder > 3) base[3] = vgetq_lane_bf16(temp, 3);
if (remainder > 4) base[4] = vgetq_lane_bf16(temp, 4);
if (remainder > 5) base[5] = vgetq_lane_bf16(temp, 5);
if (remainder > 6) base[6] = vgetq_lane_bf16(temp, 6);
}
};
};

struct BF16Vec32 : public Vec<BF16Vec32> {
Expand All @@ -213,6 +234,25 @@ struct BF16Vec32 : public Vec<BF16Vec32> {
: reg({vec8_data.reg, vec8_data.reg, vec8_data.reg, vec8_data.reg}) {};

void save(void* ptr) const { *reinterpret_cast<bfloat16x8x4_t*>(ptr) = reg; };
void save(void* ptr, const int elem_num) const {
int full_blocks = elem_num / NUM_ELEMENTS_REG(reg.val[0]);
int remainder = elem_num % NUM_ELEMENTS_REG(reg.val[0]);
for (int i = 0; i < full_blocks; i++)
vst1q_bf16(
reinterpret_cast<__bf16*>(ptr) + NUM_ELEMENTS_REG(reg.val[0]) * i,
reg.val[i]);
if (remainder > 0) {
bfloat16x8_t temp = reg.val[full_blocks];
bfloat16_t* base = reinterpret_cast<bfloat16_t*>(ptr) + full_blocks * 8;
base[0] = vgetq_lane_bf16(temp, 0);
if (remainder > 1) base[1] = vgetq_lane_bf16(temp, 1);
if (remainder > 2) base[2] = vgetq_lane_bf16(temp, 2);
if (remainder > 3) base[3] = vgetq_lane_bf16(temp, 3);
if (remainder > 4) base[4] = vgetq_lane_bf16(temp, 4);
if (remainder > 5) base[5] = vgetq_lane_bf16(temp, 5);
if (remainder > 6) base[6] = vgetq_lane_bf16(temp, 6);
}
};
};
#endif

Expand Down Expand Up @@ -372,6 +412,48 @@ struct FP32Vec8 : public Vec<FP32Vec8> {
}
};

struct INT32Vec16 : public Vec<INT32Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
union AliasReg {
int32x4x4_t reg;
int32_t values[VEC_ELEM_NUM];
};
int32x4x4_t reg;

explicit INT32Vec16(const void* ptr) {
reg.val[0] = vld1q_s32(reinterpret_cast<const int32_t*>(ptr));
reg.val[1] = vld1q_s32(reinterpret_cast<const int32_t*>(ptr) + 4);
reg.val[2] = vld1q_s32(reinterpret_cast<const int32_t*>(ptr) + 8);
reg.val[3] = vld1q_s32(reinterpret_cast<const int32_t*>(ptr) + 12);
}

void save(int32_t* ptr) const {
vst1q_s32(ptr, reg.val[0]);
vst1q_s32(ptr + 4, reg.val[1]);
vst1q_s32(ptr + 8, reg.val[2]);
vst1q_s32(ptr + 12, reg.val[3]);
};

void save(int32_t* ptr, const int elem_num) const {
int full_blocks = elem_num / NUM_ELEMENTS_REG(reg.val[0]);
int remainder = elem_num % NUM_ELEMENTS_REG(reg.val[0]);

for (int i = 0; i < full_blocks; i++)
vst1q_s32(
reinterpret_cast<__int32_t*>(ptr) + NUM_ELEMENTS_REG(reg.val[0]) * i,
reg.val[i]);

if (remainder > 0) {
int32x4_t temp = reg.val[full_blocks];
int32_t* base = reinterpret_cast<int32_t*>(ptr) + full_blocks * 4;
if (remainder > 0) base[0] = vgetq_lane_s32(temp, 0);
if (remainder > 1) base[1] = vgetq_lane_s32(temp, 1);
if (remainder > 2) base[2] = vgetq_lane_s32(temp, 2);
if (remainder > 3) base[3] = vgetq_lane_s32(temp, 3);
}
}
};

struct FP32Vec16 : public Vec<FP32Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
union AliasReg {
Expand Down Expand Up @@ -434,7 +516,12 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
reg.val[2] = vcvt_f32_f16(vget_low_f16(v.reg.val[1]));
reg.val[3] = vcvt_f32_f16(vget_high_f16(v.reg.val[1]));
};

explicit FP32Vec16(const INT32Vec16& v) {
reg.val[0] = vcvtq_f32_s32(v.reg.val[0]);
reg.val[1] = vcvtq_f32_s32(v.reg.val[1]);
reg.val[2] = vcvtq_f32_s32(v.reg.val[2]);
reg.val[3] = vcvtq_f32_s32(v.reg.val[3]);
};
FP32Vec16 operator+(const FP32Vec16& b) const {
return FP32Vec16(float32x4x4_t({vaddq_f32(reg.val[0], b.reg.val[0]),
vaddq_f32(reg.val[1], b.reg.val[1]),
Expand Down Expand Up @@ -463,6 +550,85 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
vdivq_f32(reg.val[3], b.reg.val[3])}));
};

FP32Vec16 clamp(const FP32Vec16& min, const FP32Vec16& max) const {
return FP32Vec16(float32x4x4_t(
{vminq_f32(max.reg.val[0], vmaxq_f32(min.reg.val[0], reg.val[0])),
vminq_f32(max.reg.val[1], vmaxq_f32(min.reg.val[1], reg.val[1])),
vminq_f32(max.reg.val[2], vmaxq_f32(min.reg.val[2], reg.val[2])),
vminq_f32(max.reg.val[3], vmaxq_f32(min.reg.val[3], reg.val[3]))}));
};

FP32Vec16 max(const FP32Vec16& b) const {
return FP32Vec16(float32x4x4_t({vmaxq_f32(b.reg.val[0], reg.val[0]),
vmaxq_f32(b.reg.val[1], reg.val[1]),
vmaxq_f32(b.reg.val[2], reg.val[2]),
vmaxq_f32(b.reg.val[3], reg.val[3])}));
};

FP32Vec16 max(const FP32Vec16& b, const int elem_num) const {
int full_blocks = elem_num / NUM_ELEMENTS_REG(reg.val[0]);
int remainder = elem_num % NUM_ELEMENTS_REG(reg.val[0]);
float32x4x4_t temp;

for (int i = 0; i < full_blocks; i++)
temp.val[i] = vmaxq_f32(b.reg.val[i], reg.val[i]);

if (remainder > 0) {
float max_v = std::max(vgetq_lane_f32(reg.val[full_blocks], 0),
vgetq_lane_f32(b.reg.val[full_blocks], 0));
temp.val[full_blocks] = vsetq_lane_f32(max_v, temp.val[full_blocks], 0);
}
if (remainder > 1) {
float max_v = std::max(vgetq_lane_f32(reg.val[full_blocks], 1),
vgetq_lane_f32(b.reg.val[full_blocks], 1));
temp.val[full_blocks] = vsetq_lane_f32(max_v, temp.val[full_blocks], 1);
}
if (remainder > 2) {
float max_v = std::max(vgetq_lane_f32(reg.val[full_blocks], 2),
vgetq_lane_f32(b.reg.val[full_blocks], 2));
temp.val[full_blocks] = vsetq_lane_f32(max_v, temp.val[full_blocks], 2);
}
return FP32Vec16(temp);
};

FP32Vec16 min(const FP32Vec16& b) const {
return FP32Vec16(float32x4x4_t({
vminq_f32(b.reg.val[0], reg.val[0]),
vminq_f32(b.reg.val[1], reg.val[1]),
vminq_f32(b.reg.val[2], reg.val[2]),
vminq_f32(b.reg.val[3], reg.val[3]),
}));
};
FP32Vec16 min(const FP32Vec16& b, const int elem_num) const {
int full_blocks = elem_num / NUM_ELEMENTS_REG(reg.val[0]);
const int remainder = elem_num % NUM_ELEMENTS_REG(reg.val[0]);
float32x4x4_t temp;
for (int i = 0; i < full_blocks; i++)
temp.val[i] = vminq_f32(b.reg.val[i], reg.val[i]);

if (remainder > 0) {
float min_v = std::min(vgetq_lane_f32(reg.val[full_blocks], 0),
vgetq_lane_f32(b.reg.val[full_blocks], 0));
temp.val[full_blocks] = vsetq_lane_f32(min_v, temp.val[full_blocks], 0);
}
if (remainder > 1) {
float min_v = std::min(vgetq_lane_f32(reg.val[full_blocks], 1),
vgetq_lane_f32(b.reg.val[full_blocks], 1));
temp.val[full_blocks] = vsetq_lane_f32(min_v, temp.val[full_blocks], 1);
}
if (remainder > 2) {
float min_v = std::min(vgetq_lane_f32(reg.val[full_blocks], 2),
vgetq_lane_f32(b.reg.val[full_blocks], 2));
temp.val[full_blocks] = vsetq_lane_f32(min_v, temp.val[full_blocks], 2);
}

return FP32Vec16(temp);
};
FP32Vec16 abs() const {
return FP32Vec16(
float32x4x4_t({vabsq_f32(reg.val[0]), vabsq_f32(reg.val[1]),
vabsq_f32(reg.val[2]), vabsq_f32(reg.val[3])}));
}
float reduce_sum() const {
AliasReg ar;
ar.reg = reg;
Expand All @@ -473,6 +639,24 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
return answer;
};

float reduce_max() const {
AliasReg ar;
ar.reg = reg;
float max_v = std::numeric_limits<float>::lowest();
unroll_loop<int, VEC_ELEM_NUM>(
[&max_v, &ar](int i) { max_v = std::max(max_v, ar.values[i]); });
return max_v;
}

float reduce_min() const {
AliasReg ar;
ar.reg = reg;
float min_v = std::numeric_limits<float>::max();
unroll_loop<int, VEC_ELEM_NUM>(
[&min_v, &ar](int i) { min_v = std::min(min_v, ar.values[i]); });
return min_v;
}

template <int group_size>
float reduce_sub_sum(int idx) {
static_assert(VEC_ELEM_NUM % group_size == 0);
Expand All @@ -493,6 +677,83 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
vst1q_f32(ptr + 8, reg.val[2]);
vst1q_f32(ptr + 12, reg.val[3]);
};

void save(float* ptr, const int elem_num) const {
int full_blocks = elem_num / NUM_ELEMENTS_REG(reg.val[0]);
int remainder = elem_num % NUM_ELEMENTS_REG(reg.val[0]);

for (int i = 0; i < full_blocks; i++)
vst1q_f32(
reinterpret_cast<float32_t*>(ptr) + NUM_ELEMENTS_REG(reg.val[0]) * i,
reg.val[i]);

if (remainder > 0) {
float32x4_t temp = reg.val[full_blocks];
float* base = reinterpret_cast<float32_t*>(ptr) +
full_blocks * NUM_ELEMENTS_REG(reg.val[0]);
if (remainder > 0) base[0] = vgetq_lane_f32(temp, 0);
if (remainder > 1) base[1] = vgetq_lane_f32(temp, 1);
if (remainder > 2) base[2] = vgetq_lane_f32(temp, 2);
}
}
};

struct INT8Vec16 : public Vec<INT8Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
union AliasReg {
int8x16_t reg;
int8_t values[VEC_ELEM_NUM];
};
int8x16_t reg;

explicit INT8Vec16(const FP32Vec16& vec) {
// Convert each 128-bit float32 vector to int32
int32x4_t part0 =
vcvtq_s32_f32(vec.reg.val[0]); // Convert first 128-bit block
int32x4_t part1 =
vcvtq_s32_f32(vec.reg.val[1]); // Convert second 128-bit block
int32x4_t part2 =
vcvtq_s32_f32(vec.reg.val[2]); // Convert third 128-bit block
int32x4_t part3 =
vcvtq_s32_f32(vec.reg.val[3]); // Convert fourth 128-bit block

// Narrow each 32-bit vector to 8 bits and combine
int8x8_t lower =
vqmovn_s16(vcombine_s16(vqmovn_s32(part0), vqmovn_s32(part1)));
int8x8_t upper =
vqmovn_s16(vcombine_s16(vqmovn_s32(part2), vqmovn_s32(part3)));
reg = vcombine_s8(lower, upper); // Combine to form a single 128-bit vector
}

void save(int8_t* ptr) const { vst1q_s8(ptr, reg); };

void save(int8_t* ptr, const int elem_num) const {
int full_blocks = elem_num / NUM_ELEMENTS_REG(reg);
int remainder = elem_num % NUM_ELEMENTS_REG(reg);

for (int i = 0; i < full_blocks; i++)
vst1q_s8(reinterpret_cast<int8_t*>(ptr) + NUM_ELEMENTS_REG(reg) * i, reg);
if (remainder > 0) {
int8x16_t temp = reg;
int8_t* base =
reinterpret_cast<int8_t*>(ptr) + full_blocks * NUM_ELEMENTS_REG(reg);
if (remainder > 0) base[0] = vgetq_lane_s8(temp, 0);
if (remainder > 1) base[1] = vgetq_lane_s8(temp, 1);
if (remainder > 2) base[2] = vgetq_lane_s8(temp, 2);
if (remainder > 3) base[3] = vgetq_lane_s8(temp, 3);
if (remainder > 4) base[4] = vgetq_lane_s8(temp, 4);
if (remainder > 5) base[5] = vgetq_lane_s8(temp, 5);
if (remainder > 6) base[6] = vgetq_lane_s8(temp, 6);
if (remainder > 7) base[7] = vgetq_lane_s8(temp, 7);
if (remainder > 8) base[8] = vgetq_lane_s8(temp, 8);
if (remainder > 9) base[9] = vgetq_lane_s8(temp, 9);
if (remainder > 10) base[10] = vgetq_lane_s8(temp, 10);
if (remainder > 11) base[11] = vgetq_lane_s8(temp, 11);
if (remainder > 12) base[12] = vgetq_lane_s8(temp, 12);
if (remainder > 13) base[13] = vgetq_lane_s8(temp, 13);
if (remainder > 14) base[14] = vgetq_lane_s8(temp, 14);
}
};
};

template <typename T>
Expand Down
Loading