-
-
Notifications
You must be signed in to change notification settings - Fork 10.5k
Closed
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
The output of `python collect_env.py`
Collecting environment information...
PyTorch version: 2.4.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.31
Python version: 3.12.6 (main, Sep 10 2024, 00:05:17) [GCC 9.4.0] (64-bit runtime)
Python platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA H100 80GB HBM3
GPU 1: NVIDIA H100 80GB HBM3
GPU 2: NVIDIA H100 80GB HBM3
GPU 3: NVIDIA H100 80GB HBM3
GPU 4: NVIDIA H100 80GB HBM3
GPU 5: NVIDIA H100 80GB HBM3
GPU 6: NVIDIA H100 80GB HBM3
GPU 7: NVIDIA H100 80GB HBM3
Nvidia driver version: 535.161.08
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 46 bits physical, 57 bits virtual
CPU(s): 96
On-line CPU(s) list: 0-95
Thread(s) per core: 1
Core(s) per socket: 48
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 143
Model name: Intel(R) Xeon(R) Platinum 8480C
Stepping: 8
CPU MHz: 2000.001
BogoMIPS: 4000.00
Hypervisor vendor: Microsoft
Virtualization type: full
L1d cache: 4.5 MiB
L1i cache: 3 MiB
L2 cache: 192 MiB
L3 cache: 210 MiB
NUMA node0 CPU(s): 0-47
NUMA node1 CPU(s): 48-95
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Unknown: No mitigations
Vulnerability Retbleed: Vulnerable
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Retpoline
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology tsc_reliable nonstop_tsc cpuid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx_vnni avx512_bf16 avx512vbmi umip waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid cldemote movdiri movdir64b fsrm serialize amx_bf16 avx512_fp16 amx_tile amx_int8 arch_capabilities
Versions of relevant libraries:
[pip3] flashinfer==0.1.6+cu121torch2.4
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.1.3.1
[pip3] nvidia-cuda-cupti-cu12==12.1.105
[pip3] nvidia-cuda-nvrtc-cu12==12.1.105
[pip3] nvidia-cuda-runtime-cu12==12.1.105
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.0.2.54
[pip3] nvidia-curand-cu12==10.3.2.106
[pip3] nvidia-cusolver-cu12==11.4.5.107
[pip3] nvidia-cusparse-cu12==12.1.0.106
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] nvidia-nvjitlink-cu12==12.6.68
[pip3] nvidia-nvtx-cu12==12.1.105
[pip3] pyzmq==26.2.0
[pip3] torch==2.4.0
[pip3] torchvision==0.19.0
[pip3] transformers==4.45.0
[pip3] triton==3.0.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.6.1.dev238+ge2c6e0a82
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 NIC6 NIC7 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV18 NV18 NV18 NV18 NV18 NV18 NV18 NODE NODE NODE NODE SYS SYS SYS SYS 0-47 0 N/A
GPU1 NV18 X NV18 NV18 NV18 NV18 NV18 NV18 NODE NODE NODE NODE SYS SYS SYS SYS 0-47 0 N/A
GPU2 NV18 NV18 X NV18 NV18 NV18 NV18 NV18 NODE NODE NODE NODE SYS SYS SYS SYS 0-47 0 N/A
GPU3 NV18 NV18 NV18 X NV18 NV18 NV18 NV18 NODE NODE NODE NODE SYS SYS SYS SYS 0-47 0 N/A
GPU4 NV18 NV18 NV18 NV18 X NV18 NV18 NV18 SYS SYS SYS SYS NODE NODE NODE NODE 48-95 1 N/A
GPU5 NV18 NV18 NV18 NV18 NV18 X NV18 NV18 SYS SYS SYS SYS NODE NODE NODE NODE 48-95 1 N/A
GPU6 NV18 NV18 NV18 NV18 NV18 NV18 X NV18 SYS SYS SYS SYS NODE NODE NODE NODE 48-95 1 N/A
GPU7 NV18 NV18 NV18 NV18 NV18 NV18 NV18 X SYS SYS SYS SYS NODE NODE NODE NODE 48-95 1 N/A
NIC0 NODE NODE NODE NODE SYS SYS SYS SYS X NODE NODE NODE SYS SYS SYS SYS
NIC1 NODE NODE NODE NODE SYS SYS SYS SYS NODE X NODE NODE SYS SYS SYS SYS
NIC2 NODE NODE NODE NODE SYS SYS SYS SYS NODE NODE X NODE SYS SYS SYS SYS
NIC3 NODE NODE NODE NODE SYS SYS SYS SYS NODE NODE NODE X SYS SYS SYS SYS
NIC4 SYS SYS SYS SYS NODE NODE NODE NODE SYS SYS SYS SYS X NODE NODE NODE
NIC5 SYS SYS SYS SYS NODE NODE NODE NODE SYS SYS SYS SYS NODE X NODE NODE
NIC6 SYS SYS SYS SYS NODE NODE NODE NODE SYS SYS SYS SYS NODE NODE X NODE
NIC7 SYS SYS SYS SYS NODE NODE NODE NODE SYS SYS SYS SYS NODE NODE NODE X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_ib0
NIC1: mlx5_ib1
NIC2: mlx5_ib2
NIC3: mlx5_ib3
NIC4: mlx5_ib4
NIC5: mlx5_ib5
NIC6: mlx5_ib6
NIC7: mlx5_ib7
Model Input Dumps
{"messages":
[
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "...."
}
},
{
"type": "text",
"text": "describe the image as specific as possible"
}
]
}
]
,"max_tokens":50,"temperature":0,"top_p":1,"stream":false, "model": "Llama-3.2-90B-Vision-Instruct"}
🐛 Describe the bug
- when
stream = false
, response looks like below:
{
"id":"chat-01f9cd3c8144437a97770d7e113f7919",
"object":"chat.completion",
"created":1727798141,
"model":"Llama-3.2-90B-Vision-Instruct",
"choices":[
{
"index":0,
"message":{
"role":"assistant",
"content":"The image depicts a stunning galaxy, with its central core radiating a bright light. The galaxy's spiral arms are visible, featuring a mix of dark and light blue hues, accompanied by numerous stars scattered throughout. In the foreground, a smaller galaxy is",
"tool_calls":[
]
},
"finish_reason":"length"
}
],
"usage":{
"prompt_tokens":18,
"total_tokens":68,
"completion_tokens":50
}
}
- when
stream = true
, response looks like below (only last few chunks):
data: {"id":"chat-be64e8e157df4643bb60518b10d3ad64","object":"chat.completion.chunk","created":1727747281,"model":"Llama-3.2-90B-Vision-Instruct","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}],"usage":{"prompt_tokens":6422,"total_tokens":6422,"completion_tokens":0}}
data: {"id":"chat-be64e8e157df4643bb60518b10d3ad64","object":"chat.completion.chunk","created":1727747281,"model":"Llama-3.2-90B-Vision-Instruct","choices":[{"index":0,"delta":{"content":"The"},"logprobs":null,"finish_reason":null}],"usage":{"prompt_tokens":6422,"total_tokens":6423,"completion_tokens":1}}
data: {"id":"chat-be64e8e157df4643bb60518b10d3ad64","object":"chat.completion.chunk","created":1727747281,"model":"Llama-3.2-90B-Vision-Instruct","choices":[{"index":0,"delta":{"content":" image"},"logprobs":null,"finish_reason":null}],"usage":{"prompt_tokens":6422,"total_tokens":6423,"completion_tokens":1}}
there is a huge difference for the # of prompt_tokens (18 vs 6422) between streaming and non-streaming mode, this difference might be related to if we add image encoder_prompt_tokens to the total number of prompt tokens.
- Could you help clarify what is the expected # of prompt tokens for image input between streaming and non-streaming requests?
- Could you help fix the inconsistence between streaming and non-streaming requests?
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working