-
-
Notifications
You must be signed in to change notification settings - Fork 10.5k
Description
Your current environment
The output of `python collect_env.py`
PyTorch version: 2.4.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: CentOS Linux 7 (Core) (x86_64)
GCC version: (conda-forge gcc 11.4.0-13) 11.4.0
Clang version: Could not collect
CMake version: version 2.8.12.2
Libc version: glibc-2.17
Python version: 3.11.9 | packaged by conda-forge | (main, Apr 19 2024, 18:36:13) [GCC 12.3.0] (64-bit runtime)
Python platform: Linux-3.10.0-1160.95.1.el7.x86_64-x86_64-with-glibc2.17
Is CUDA available: True
CUDA runtime version: 12.1.105
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA GeForce RTX 3090
GPU 1: NVIDIA GeForce RTX 3090
GPU 2: NVIDIA GeForce RTX 3090
GPU 3: NVIDIA GeForce RTX 3090
GPU 4: NVIDIA GeForce RTX 3090
GPU 5: NVIDIA GeForce RTX 3090
Nvidia driver version: 535.104.05
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 128
On-line CPU(s) list: 0-127
Thread(s) per core: 2
Core(s) per socket: 32
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 106
Model name: Intel(R) Xeon(R) Platinum 8336C CPU @ 2.30GHz
Stepping: 6
CPU MHz: 800.000
CPU max MHz: 2301.0000
CPU min MHz: 800.0000
BogoMIPS: 4600.00
Virtualization: VT-x
L1d cache: 48K
L1i cache: 32K
L2 cache: 1280K
L3 cache: 55296K
NUMA node0 CPU(s): 0-31,64-95
NUMA node1 CPU(s): 32-63,96-127
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch epb cat_l3 invpcid_single ssbd mba rsb_ctxsw ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq md_clear pconfig spec_ctrl intel_stibp flush_l1d arch_capabilities
Versions of relevant libraries:
[pip3] flashinfer==0.1.6+cu121torch2.4
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.1.3.1
[pip3] nvidia-cuda-cupti-cu12==12.1.105
[pip3] nvidia-cuda-nvrtc-cu12==12.1.105
[pip3] nvidia-cuda-runtime-cu12==12.1.105
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.0.2.54
[pip3] nvidia-curand-cu12==10.3.2.106
[pip3] nvidia-cusolver-cu12==11.4.5.107
[pip3] nvidia-cusparse-cu12==12.1.0.106
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] nvidia-nvjitlink-cu12==12.6.20
[pip3] nvidia-nvtx-cu12==12.1.105
[pip3] pyzmq==26.2.0
[pip3] torch==2.4.0
[pip3] torchvision==0.19.0
[pip3] transformers==4.45.0.dev0
[pip3] triton==3.0.0
[pip3] zmq==0.0.0
[conda] flashinfer 0.1.6+cu121torch2.4 pypi_0 pypi
[conda] numpy 1.26.4 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.1.3.1 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.1.105 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.1.105 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.1.105 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.0.2.54 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.2.106 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.4.5.107 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.1.0.106 pypi_0 pypi
[conda] nvidia-ml-py 12.560.30 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.20.5 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.6.20 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.1.105 pypi_0 pypi
[conda] pyzmq 26.2.0 pypi_0 pypi
[conda] torch 2.4.0 pypi_0 pypi
[conda] torchvision 0.19.0 pypi_0 pypi
[conda] transformers 4.45.0.dev0 pypi_0 pypi
[conda] triton 3.0.0 pypi_0 pypi
[conda] zmq 0.0.0 pypi_0 pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.6.1.post2@0faab90eb006c677add65cd4c2d0f740a63e064d
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NODE NODE SYS SYS SYS 0-31,64-95 0 N/A
GPU1 NODE X PXB SYS SYS SYS 0-31,64-95 0 N/A
GPU2 NODE PXB X SYS SYS SYS 0-31,64-95 0 N/A
GPU3 SYS SYS SYS X NODE NODE 32-63,96-127 1 N/A
GPU4 SYS SYS SYS NODE X PXB 32-63,96-127 1 N/A
GPU5 SYS SYS SYS NODE PXB X 32-63,96-127 1 N/A
Model Input Dumps
No response
🐛 Describe the bug
After a binary search, I found that after commit 7c7714d, the main port binding will fail when pp> 1. But if we only set tp>1, the binding will success.
For example:
vllm serve /home/ai/ai/model/Qwen2.5-3B-Instruct/ --served-model-name qwen2.5-3B -pp 2 --trust-remote-code --max-model-len 4096 --enforce-eager --port 18004 --gpu-memory-utilization 1 --preemption-mode swap
will fail with ERROR:
ERROR: [Errno 98] error while attempting to bind on address ('0.0.0.0', 18004): address already in use
But
vllm serve /home/ai/ai/model/Qwen2.5-3B-Instruct/ --served-model-name qwen2.5-3B -tp 2 --trust-remote-code --max-model-len 4096 --enforce-eager --port 18004 --gpu-memory-utilization 1 --preemption-mode swap
will run successfully with:
INFO: Uvicorn running on http://0.0.0.0:18004 (Press CTRL+C to quit)
If we checkout to commit 9d104b5 in main branch, we can launch successfully with pp>1
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.