-
-
Notifications
You must be signed in to change notification settings - Fork 9.4k
Closed
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
Collecting environment information...
PyTorch version: 2.3.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.29.5
Libc version: glibc-2.35
Python version: 3.10.14 (main, May 6 2024, 19:42:50) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-6.5.0-1018-oracle-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.4.99
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA H100 80GB HBM3
GPU 1: NVIDIA H100 80GB HBM3
GPU 2: NVIDIA H100 80GB HBM3
GPU 3: NVIDIA H100 80GB HBM3
GPU 4: NVIDIA H100 80GB HBM3
GPU 5: NVIDIA H100 80GB HBM3
GPU 6: NVIDIA H100 80GB HBM3
GPU 7: NVIDIA H100 80GB HBM3
Nvidia driver version: 535.161.07
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.7
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 224
On-line CPU(s) list: 0-111
Off-line CPU(s) list: 112-223
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Platinum 8480+
CPU family: 6
Model: 143
Thread(s) per core: 1
Core(s) per socket: 56
Socket(s): 2
Stepping: 8
CPU max MHz: 3800.0000
CPU min MHz: 0.0000
BogoMIPS: 4000.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req vnmi avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr ibt amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities
Virtualization: VT-x
L1d cache: 5.3 MiB (112 instances)
L1i cache: 3.5 MiB (112 instances)
L2 cache: 224 MiB (112 instances)
L3 cache: 210 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-55
NUMA node1 CPU(s): 56-111
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers
Vulnerability Spectre v2: Vulnerable, IBPB: disabled, STIBP: disabled, PBRSB-eIBRS: Vulnerable
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] torch==2.3.0
[pip3] torchvision==0.18.0
[pip3] transformers==4.42.3
[pip3] triton==2.3.0
[conda] numpy 1.26.4 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.20.5 pypi_0 pypi
[conda] torch 2.3.0 pypi_0 pypi
[conda] torchvision 0.18.0 pypi_0 pypi
[conda] transformers 4.42.3 pypi_0 pypi
[conda] triton 2.3.0 pypi_0 pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.5.1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 NIC6 NIC7 NIC8 NIC9 NIC10 NIC11 NIC12 NIC13 NIC14 NIC15 NIC16 NIC17 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV18 NV18 NV18 NV18 NV18 NV18 NV18 PXB PXB NODE NODE NODE NODE NODE NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS 0-55 0 N/A
GPU1 NV18 X NV18 NV18 NV18 NV18 NV18 NV18 NODE NODE NODE PXB PXB NODE NODE NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS 0-55 0 N/A
GPU2 NV18 NV18 X NV18 NV18 NV18 NV18 NV18 NODE NODE NODE NODE NODE PXB PXB NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS 0-55 0 N/A
GPU3 NV18 NV18 NV18 X NV18 NV18 NV18 NV18 NODE NODE NODE NODE NODE NODE NODE PXB PXB SYS SYS SYS SYS SYS SYS SYS SYS SYS 0-55 0 N/A
GPU4 NV18 NV18 NV18 NV18 X NV18 NV18 NV18 SYS SYS SYS SYS SYS SYS SYS SYS SYS PXB PXB NODE NODE NODE NODE NODE NODE NODE 56-111 1 N/A
GPU5 NV18 NV18 NV18 NV18 NV18 X NV18 NV18 SYS SYS SYS SYS SYS SYS SYS SYS SYS NODE NODE NODE PXB PXB NODE NODE NODE NODE 56-111 1 N/A
GPU6 NV18 NV18 NV18 NV18 NV18 NV18 X NV18 SYS SYS SYS SYS SYS SYS SYS SYS SYS NODE NODE NODE NODE NODE PXB PXB NODE NODE 56-111 1 N/A
GPU7 NV18 NV18 NV18 NV18 NV18 NV18 NV18 X SYS SYS SYS SYS SYS SYS SYS SYS SYS NODE NODE NODE NODE NODE NODE NODE PXB PXB 56-111 1 N/A
NIC0 PXB NODE NODE NODE SYS SYS SYS SYS X PIX NODE NODE NODE NODE NODE NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS
NIC1 PXB NODE NODE NODE SYS SYS SYS SYS PIX X NODE NODE NODE NODE NODE NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS
NIC2 NODE NODE NODE NODE SYS SYS SYS SYS NODE NODE X NODE NODE NODE NODE NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS
NIC3 NODE PXB NODE NODE SYS SYS SYS SYS NODE NODE NODE X PIX NODE NODE NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS
NIC4 NODE PXB NODE NODE SYS SYS SYS SYS NODE NODE NODE PIX X NODE NODE NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS
NIC5 NODE NODE PXB NODE SYS SYS SYS SYS NODE NODE NODE NODE NODE X PIX NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS
NIC6 NODE NODE PXB NODE SYS SYS SYS SYS NODE NODE NODE NODE NODE PIX X NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS
NIC7 NODE NODE NODE PXB SYS SYS SYS SYS NODE NODE NODE NODE NODE NODE NODE X PIX SYS SYS SYS SYS SYS SYS SYS SYS SYS
NIC8 NODE NODE NODE PXB SYS SYS SYS SYS NODE NODE NODE NODE NODE NODE NODE PIX X SYS SYS SYS SYS SYS SYS SYS SYS SYS
NIC9 SYS SYS SYS SYS PXB NODE NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS X PIX NODE NODE NODE NODE NODE NODE NODE
NIC10 SYS SYS SYS SYS PXB NODE NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS PIX X NODE NODE NODE NODE NODE NODE NODE
NIC11 SYS SYS SYS SYS NODE NODE NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS NODE NODE X NODE NODE NODE NODE NODE NODE
NIC12 SYS SYS SYS SYS NODE PXB NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS NODE NODE NODE X PIX NODE NODE NODE NODE
NIC13 SYS SYS SYS SYS NODE PXB NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS NODE NODE NODE PIX X NODE NODE NODE NODE
NIC14 SYS SYS SYS SYS NODE NODE PXB NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS NODE NODE NODE NODE NODE X PIX NODE NODE
NIC15 SYS SYS SYS SYS NODE NODE PXB NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS NODE NODE NODE NODE NODE PIX X NODE NODE
NIC16 SYS SYS SYS SYS NODE NODE NODE PXB SYS SYS SYS SYS SYS SYS SYS SYS SYS NODE NODE NODE NODE NODE NODE NODE X PIX
NIC17 SYS SYS SYS SYS NODE NODE NODE PXB SYS SYS SYS SYS SYS SYS SYS SYS SYS NODE NODE NODE NODE NODE NODE NODE PIX X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
NIC4: mlx5_4
NIC5: mlx5_5
NIC6: mlx5_6
NIC7: mlx5_7
NIC8: mlx5_8
NIC9: mlx5_9
NIC10: mlx5_10
NIC11: mlx5_11
NIC12: mlx5_12
NIC13: mlx5_13
NIC14: mlx5_14
NIC15: mlx5_15
NIC16: mlx5_16
NIC17: mlx5_17
🐛 Describe the bug
export NCCL_IGNORE_DISABLED_P2P=1
export CUDA_VISIBLE_DEVICES=0
python -m vllm.entrypoints.openai.api_server --port=5000 \
--host=0.0.0.0 --model google/gemma-2-27b-it \
--tensor-parallel-size=1 --seed 1234 \
--trust-remote-code \
--tensor-parallel-size=1 \
--gpu-memory-utilization=0.99 \
--max-model-len 8192 \
--max-num-batched-tokens=65536 --max-log-len=100 \
--download-dir=$HOME/.cache/huggingface/hub &> vllm_gemma2_27b_2.log &
disown %1
INFO 07-08 19:39:49 api_server.py:206] vLLM API server version 0.5.1
INFO 07-08 19:39:49 api_server.py:207] args: Namespace(host='0.0.0.0', port=5000, uvicorn_log_level='info', allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key=None, lora_modules=None, chat_template=None, response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, ssl_cert_reqs=0, root_path=None, middleware=[], model='google/gemma-2-27b-it', tokenizer=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=True, download_dir='/home/ubuntu/.cache/huggingface/hub', load_format='auto', dtype='auto', kv_cache_dtype='auto', quantization_param_path=None, max_model_len=8192, guided_decoding_backend='outlines', distributed_executor_backend=None, worker_use_ray=False, pipeline_parallel_size=1, tensor_parallel_size=1, max_parallel_loading_workers=None, ray_workers_use_nsight=False, block_size=16, enable_prefix_caching=False, disable_sliding_window=False, use_v2_block_manager=False, num_lookahead_slots=0, seed=1234, swap_space=4, gpu_memory_utilization=0.99, num_gpu_blocks_override=None, max_num_batched_tokens=65536, max_num_seqs=256, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, enforce_eager=False, max_context_len_to_capture=None, max_seq_len_to_capture=8192, disable_custom_all_reduce=False, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, enable_lora=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, device='auto', scheduler_delay_factor=0.0, enable_chunked_prefill=False, speculative_model=None, num_speculative_tokens=None, speculative_draft_tensor_parallel_size=None, speculative_max_model_len=None, speculative_disable_by_batch_size=None, ngram_prompt_lookup_max=None, ngram_prompt_lookup_min=None, spec_decoding_acceptance_method='rejection_sampler', typical_acceptance_sampler_posterior_threshold=None, typical_acceptance_sampler_posterior_alpha=None, model_loader_extra_config=None, preemption_mode=None, served_model_name=None, qlora_adapter_name_or_path=None, otlp_traces_endpoint=None, engine_use_ray=False, disable_log_requests=False, max_log_len=100)
WARNING 07-08 19:39:49 utils.py:562] Gemma 2 uses sliding window attention for every odd layer, which is currently not supported by vLLM. Disabling sliding window and capping the max length to the sliding window size (4096).
Traceback (most recent call last):
File "/home/ubuntu/miniconda3/envs/vllm/lib/python3.10/runpy.py", line 196, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/home/ubuntu/miniconda3/envs/vllm/lib/python3.10/runpy.py", line 86, in _run_code
exec(code, run_globals)
File "/home/ubuntu/vllm/vllm/entrypoints/openai/api_server.py", line 216, in <module>
engine = AsyncLLMEngine.from_engine_args(
File "/home/ubuntu/vllm/vllm/engine/async_llm_engine.py", line 382, in from_engine_args
engine_config = engine_args.create_engine_config()
File "/home/ubuntu/vllm/vllm/engine/arg_utils.py", line 625, in create_engine_config
model_config = ModelConfig(
File "/home/ubuntu/vllm/vllm/config.py", line 166, in __init__
self.max_model_len = _get_and_verify_max_len(
File "/home/ubuntu/vllm/vllm/config.py", line 1452, in _get_and_verify_max_len
raise ValueError(
ValueError: User-specified max_model_len (8192) is greater than the derived max_model_len (sliding_window=4096 or model_max_length=None in model's config.json). This may lead to incorrect model outputs or CUDA errors. Make sure the value is correct and within the model context size.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working