Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion benchmarks.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,7 @@ def run(
model_type = type(attempt_load(weights, fuse=False)) # DetectionModel, SegmentationModel, etc.
for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU)
try:
assert i not in (9, 10, 11), 'inference not supported' # Edge TPU, TF.js and Paddle are unsupported
assert i not in (9, 10), 'inference not supported' # Edge TPU and TF.js are unsupported
assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' # CoreML
if 'cpu' in device.type:
assert cpu, 'inference not supported on CPU'
Expand Down
10 changes: 4 additions & 6 deletions models/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -460,8 +460,8 @@ def wrap_frozen_graph(gd, inputs, outputs):
if cuda:
config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0)
predictor = pdi.create_predictor(config)
input_names = predictor.get_input_names()
input_handle = predictor.get_input_handle(input_names[0])
input_handle = predictor.get_input_handle(predictor.get_input_names()[0])
output_names = predictor.get_output_names()
else:
raise NotImplementedError(f'ERROR: {w} is not a supported format')

Expand Down Expand Up @@ -517,12 +517,10 @@ def forward(self, im, augment=False, visualize=False):
k = 'var_' + str(sorted(int(k.replace('var_', '')) for k in y)[-1]) # output key
y = y[k] # output
elif self.paddle: # PaddlePaddle
im = im.cpu().numpy().astype("float32")
im = im.cpu().numpy().astype(np.float32)
self.input_handle.copy_from_cpu(im)
self.predictor.run()
output_names = self.predictor.get_output_names()
output_handle = self.predictor.get_output_handle(output_names[0])
y = output_handle.copy_to_cpu()
y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
if self.saved_model: # SavedModel
Expand Down
4 changes: 2 additions & 2 deletions utils/segment/plots.py
Original file line number Diff line number Diff line change
Expand Up @@ -99,9 +99,9 @@ def plot_images_and_masks(images, targets, masks, paths=None, fname='images.jpg'
if mh != h or mw != w:
mask = image_masks[j].astype(np.uint8)
mask = cv2.resize(mask, (w, h))
mask = mask.astype(np.bool)
mask = mask.astype(bool)
else:
mask = image_masks[j].astype(np.bool)
mask = image_masks[j].astype(bool)
with contextlib.suppress(Exception):
im[y:y + h, x:x + w, :][mask] = im[y:y + h, x:x + w, :][mask] * 0.4 + np.array(color) * 0.6
annotator.fromarray(im)
Expand Down