Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
48 changes: 42 additions & 6 deletions utils/datasets.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,15 +63,51 @@ def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=Fa
batch_size = min(batch_size, len(dataset))
nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
dataloader = torch.utils.data.DataLoader(dataset,
batch_size=batch_size,
num_workers=nw,
sampler=train_sampler,
pin_memory=True,
collate_fn=LoadImagesAndLabels.collate_fn)
dataloader = InfiniteDataLoader (dataset,
batch_size=batch_size,
num_workers=nw,
sampler=train_sampler,
pin_memory=True,
collate_fn=LoadImagesAndLabels.collate_fn)
return dataloader, dataset


class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
'''
Dataloader that reuses workers.

Uses same syntax as vanilla DataLoader.
'''

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
self.iterator = super().__iter__()

def __len__(self):
return len(self.batch_sampler.sampler)

def __iter__(self):
for i in range(len(self)):
yield next(self.iterator)


class _RepeatSampler(object):
'''
Sampler that repeats forever.

Args:
sampler (Sampler)
'''

def __init__(self, sampler):
self.sampler = sampler

def __iter__(self):
while True:
yield from iter(self.sampler)


class LoadImages: # for inference
def __init__(self, path, img_size=640):
p = str(Path(path)) # os-agnostic
Expand Down