Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 11 additions & 11 deletions train.py
Original file line number Diff line number Diff line change
Expand Up @@ -150,27 +150,27 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")

g0, g1, g2 = [], [], [] # optimizer parameter groups
g = [], [], [] # optimizer parameter groups
for v in model.modules():
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias
g2.append(v.bias)
g[2].append(v.bias)
if isinstance(v, nn.BatchNorm2d): # weight (no decay)
g0.append(v.weight)
g[1].append(v.weight)
elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay)
g1.append(v.weight)
g[0].append(v.weight)

if opt.optimizer == 'Adam':
optimizer = Adam(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
optimizer = Adam(g[2], lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
elif opt.optimizer == 'AdamW':
optimizer = AdamW(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
optimizer = AdamW(g[2], lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
else:
optimizer = SGD(g0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
optimizer = SGD(g[2], lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)

optimizer.add_param_group({'params': g1, 'weight_decay': hyp['weight_decay']}) # add g1 with weight_decay
optimizer.add_param_group({'params': g2}) # add g2 (biases)
optimizer.add_param_group({'params': g[0], 'weight_decay': hyp['weight_decay']}) # add g0 with weight_decay
optimizer.add_param_group({'params': g[1]}) # add g1 (BatchNorm2d weights)
LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups "
f"{len(g0)} weight (no decay), {len(g1)} weight, {len(g2)} bias")
del g0, g1, g2
f"{len(g[1])} weight (no decay), {len(g[0])} weight, {len(g[2])} bias")
del g

# Scheduler
if opt.cos_lr:
Expand Down