Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions train.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \
Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
callbacks.run('on_pretrain_routine_start')

# Directories
w = save_dir / 'weights' # weights dir
Expand Down Expand Up @@ -291,11 +292,13 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
scaler = amp.GradScaler(enabled=cuda)
stopper = EarlyStopping(patience=opt.patience)
compute_loss = ComputeLoss(model) # init loss class
callbacks.run('on_train_start')
LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
f"Logging results to {colorstr('bold', save_dir)}\n"
f'Starting training for {epochs} epochs...')
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
callbacks.run('on_train_epoch_start')
model.train()

# Update image weights (optional, single-GPU only)
Expand All @@ -317,6 +320,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
pbar = tqdm(pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
optimizer.zero_grad()
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
callbacks.run('on_train_batch_start')
ni = i + nb * epoch # number integrated batches (since train start)
imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0

Expand Down
4 changes: 4 additions & 0 deletions utils/loggers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,6 +84,10 @@ def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None,
else:
self.wandb = None

def on_train_start(self):
# Callback runs on train start
pass

def on_pretrain_routine_end(self):
# Callback runs on pre-train routine end
paths = self.save_dir.glob('*labels*.jpg') # training labels
Expand Down
4 changes: 4 additions & 0 deletions val.py
Original file line number Diff line number Diff line change
Expand Up @@ -188,8 +188,10 @@ def run(
dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
loss = torch.zeros(3, device=device)
jdict, stats, ap, ap_class = [], [], [], []
callbacks.run('on_val_start')
pbar = tqdm(dataloader, desc=s, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
callbacks.run('on_val_batch_start')
t1 = time_sync()
if cuda:
im = im.to(device, non_blocking=True)
Expand Down Expand Up @@ -260,6 +262,8 @@ def run(
f = save_dir / f'val_batch{batch_i}_pred.jpg' # predictions
Thread(target=plot_images, args=(im, output_to_target(out), paths, f, names), daemon=True).start()

callbacks.run('on_val_batch_end')

# Compute metrics
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
if len(stats) and stats[0].any():
Expand Down