Skip to content

Why is 'del' called explicitly? #5842

@developer0hye

Description

@developer0hye

yolov5/train.py

Line 199 in bc48457

del ckpt, csd

@glenn-jocher

Hi jocher!

Why is 'del' called explicitly?

When I ran the below code with and without del ckpt, it printed same maximum batch size.

Can it save memory usage?

If so, can we set larger batch size?

import torch
import torchvision.models as models

def load_model(path, device):
    ckpt = torch.load(path, map_location=device)
    #Process...
    del ckpt
    return True


if __name__ == "__main__":
    torch.backends.cudnn.benchmark = True
    load_model("./yolox_x.pth", device="cuda") # dummy work
    model = models.resnet18().cuda()

    print("model is loaded!")
    batch_size = 1
    while True:
        try:
            dummy_input = torch.randn(batch_size, 3, 224, 224).cuda()
            dummy_output = model(dummy_input)
            
            dummy_output = dummy_output.sum()
            dummy_output.backward()
            
            batch_size += 1
            
            ckpt = model.state_dict()
            del ckpt
        except:
            break
    print(f"maximum batch size: {batch_size}")

Weight Link: https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_x.pth

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions