-
-
Notifications
You must be signed in to change notification settings - Fork 17.2k
Description
Hi,
I am trying to train on colab using wheat data.
all image formate is jpg but giving following error
github: up to date with https://github.com/ultralytics/yolov5 ✅
YOLOv5 v4.0-63-g73a0669 torch 1.7.0+cu101 CUDA:0 (Tesla T4, 15079.75MB)
Namespace(adam=False, batch_size=8, bucket='', cache_images=False, cfg='models/yolov5s.yaml', data='wheat.yaml', device='', epochs=3, evolve=False, exist_ok=False, global_rank=-1, hyp='data/hyp.scratch.yaml', image_weights=False, img_size=[1024, 1024], local_rank=-1, log_artifacts=False, log_imgs=16, multi_scale=False, name='wd', noautoanchor=False, nosave=False, notest=False, project='runs/train', quad=False, rect=False, resume=False, save_dir='runs/train/wd4', single_cls=False, sync_bn=False, total_batch_size=8, weights='yolov5s.pt', workers=8, world_size=1)
wandb: Install Weights & Biases for YOLOv5 logging with 'pip install wandb' (recommended)
Start Tensorboard with "tensorboard --logdir runs/train", view at http://localhost:6006/
2021-02-04 17:39:45.923389: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.10.1
hyperparameters: lr0=0.01, lrf=0.2, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0
from n params module arguments
0 -1 1 3520 models.common.Focus [3, 32, 3]
1 -1 1 18560 models.common.Conv [32, 64, 3, 2]
2 -1 1 18816 models.common.C3 [64, 64, 1]
3 -1 1 73984 models.common.Conv [64, 128, 3, 2]
4 -1 1 156928 models.common.C3 [128, 128, 3]
5 -1 1 295424 models.common.Conv [128, 256, 3, 2]
6 -1 1 625152 models.common.C3 [256, 256, 3]
7 -1 1 1180672 models.common.Conv [256, 512, 3, 2]
8 -1 1 656896 models.common.SPP [512, 512, [5, 9, 13]]
9 -1 1 1182720 models.common.C3 [512, 512, 1, False]
10 -1 1 131584 models.common.Conv [512, 256, 1, 1]
11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
12 [-1, 6] 1 0 models.common.Concat [1]
13 -1 1 361984 models.common.C3 [512, 256, 1, False]
14 -1 1 33024 models.common.Conv [256, 128, 1, 1]
15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
16 [-1, 4] 1 0 models.common.Concat [1]
17 -1 1 90880 models.common.C3 [256, 128, 1, False]
18 -1 1 147712 models.common.Conv [128, 128, 3, 2]
19 [-1, 14] 1 0 models.common.Concat [1]
20 -1 1 296448 models.common.C3 [256, 256, 1, False]
21 -1 1 590336 models.common.Conv [256, 256, 3, 2]
22 [-1, 10] 1 0 models.common.Concat [1]
23 -1 1 1182720 models.common.C3 [512, 512, 1, False]
24 [17, 20, 23] 1 16182 models.yolo.Detect [1, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]
Model Summary: 283 layers, 7063542 parameters, 7063542 gradients, 16.4 GFLOPS
Transferred 354/362 items from yolov5s.pt
Scaled weight_decay = 0.0005
Optimizer groups: 62 .bias, 62 conv.weight, 59 other
train: Scanning 'wheat_data/labels/train.cache' for images and labels... 3035 found, 0 missing, 0 empty, 0 corrupted: 100% 3035/3035 [00:00<00:00, 30972536.84it/s]
val: Scanning 'wheat_data/labels/validation.cache' for images and labels... 338 found, 0 missing, 0 empty, 0 corrupted: 100% 338/338 [00:00<00:00, 2522552.94it/s]
Plotting labels...
autoanchor: Analyzing anchors... anchors/target = 5.72, Best Possible Recall (BPR) = 0.9992
Image sizes 1024 train, 1024 test
Using 2 dataloader workers
Logging results to runs/train/wd4
Starting training for 3 epochs...
Epoch gpu_mem box obj cls total targets img_size
0% 0/380 [00:00<?, ?it/s]Traceback (most recent call last):
File "train.py", line 522, in
train(hyp, opt, device, tb_writer, wandb)
File "train.py", line 264, in train
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
File "/usr/local/lib/python3.6/dist-packages/tqdm/std.py", line 1104, in iter
for obj in iterable:
File "/content/yolov5/utils/datasets.py", line 103, in iter
yield next(self.iterator)
File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/dataloader.py", line 435, in next
data = self._next_data()
File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/dataloader.py", line 1085, in _next_data
return self._process_data(data)
File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/dataloader.py", line 1111, in _process_data
data.reraise()
File "/usr/local/lib/python3.6/dist-packages/torch/_utils.py", line 428, in reraise
raise self.exc_type(msg)
AssertionError: Caught AssertionError in DataLoader worker process 0.
Original Traceback (most recent call last):
File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/worker.py", line 198, in _worker_loop
data = fetcher.fetch(index)
File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/fetch.py", line 44, in fetch
data = [self.dataset[idx] for idx in possibly_batched_index]
File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/fetch.py", line 44, in
data = [self.dataset[idx] for idx in possibly_batched_index]
File "/content/yolov5/utils/datasets.py", line 504, in getitem
img, labels = load_mosaic(self, index)
File "/content/yolov5/utils/datasets.py", line 659, in load_mosaic
img, _, (h, w) = load_image(self, index)
File "/content/yolov5/utils/datasets.py", line 614, in load_image
assert img is not None, 'Image Not Found ' + path
AssertionError: Image Not Found wheat_data\images\train\00333207f.jpg
0% 0/380 [00:00<?, ?it/s]