-
-
Notifications
You must be signed in to change notification settings - Fork 17.2k
Description
Using torch 1.6.0 CUDA:0 (GeForce RTX 2070, 8192MB)
from n params module arguments
0 -1 1 3520 models.common.Focus [3, 32, 3]
1 -1 1 18560 models.common.Conv [32, 64, 3, 2]
2 -1 1 10976 models.experimental.GhostBottleneck [128, 128, 3, 1]
3 -1 1 73984 models.common.Conv [64, 128, 3, 2]
4 -1 1 161152 models.common.BottleneckCSP [128, 128, 3]
5 -1 1 295424 models.common.Conv [128, 256, 3, 2]
6 -1 1 641792 models.common.BottleneckCSP [256, 256, 3]
7 -1 1 1180672 models.common.Conv [256, 512, 3, 2]
8 -1 1 656896 models.common.SPP [512, 512, [5, 9, 13]]
9 -1 1 1248768 models.common.BottleneckCSP [512, 512, 1, False]
10 -1 1 131584 models.common.Conv [512, 256, 1, 1]
11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
12 [-1, 6] 1 0 models.common.Concat [1]
13 -1 1 378624 models.common.BottleneckCSP [512, 256, 1, False]
14 -1 1 33024 models.common.Conv [256, 128, 1, 1]
15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
16 [-1, 4] 1 0 models.common.Concat [1]
17 -1 1 95104 models.common.BottleneckCSP [256, 128, 1, False]
18 -1 1 147712 models.common.Conv [128, 128, 3, 2]
19 [-1, 14] 1 0 models.common.Concat [1]
20 -1 1 313088 models.common.BottleneckCSP [256, 256, 1, False]
21 -1 1 590336 models.common.Conv [256, 256, 3, 2]
22 [-1, 10] 1 0 models.common.Concat [1]
23 -1 1 1248768 models.common.BottleneckCSP [512, 512, 1, False]
24 [17, 20, 23] 1 229245 Detect [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]
Traceback (most recent call last):
File "yolo.py", line 273, in
model = Model(opt.cfg).to(device)
File "yolo.py", line 92, in init
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
File "yolo.py", line 122, in forward
return self.forward_once(x, profile) # single-scale inference, train
File "yolo.py", line 138, in forward_once
x = m(x) # run
File "C:\Users\dw\Anaconda3\envs\mmdetection\lib\site-packages\torch\nn\modules\module.py", line 722, in _call_impl
result = self.forward(*input, **kwargs)
File "D:\YOLO\yolov5.4\models\experimental.py", line 90, in forward
return self.conv(x) + self.shortcut(x)
File "C:\Users\dw\Anaconda3\envs\mmdetection\lib\site-packages\torch\nn\modules\module.py", line 722, in _call_impl
result = self.forward(*input, **kwargs)
File "C:\Users\dw\Anaconda3\envs\mmdetection\lib\site-packages\torch\nn\modules\container.py", line 117, in forward
input = module(input)
File "C:\Users\dw\Anaconda3\envs\mmdetection\lib\site-packages\torch\nn\modules\module.py", line 722, in _call_impl
result = self.forward(*input, **kwargs)
File "D:\YOLO\yolov5.4\models\experimental.py", line 74, in forward
y = self.cv1(x)
File "C:\Users\dw\Anaconda3\envs\mmdetection\lib\site-packages\torch\nn\modules\module.py", line 722, in _call_impl
result = self.forward(*input, **kwargs)
File "D:\YOLO\yolov5.4\models\common.py", line 52, in forward
return self.act(self.bn(self.conv(x)))
File "C:\Users\dw\Anaconda3\envs\mmdetection\lib\site-packages\torch\nn\modules\module.py", line 722, in _call_impl
result = self.forward(*input, **kwargs)
File "C:\Users\dw\Anaconda3\envs\mmdetection\lib\site-packages\torch\nn\modules\conv.py", line 419, in forward
return self._conv_forward(input, self.weight)
File "C:\Users\dw\Anaconda3\envs\mmdetection\lib\site-packages\torch\nn\modules\conv.py", line 416, in _conv_forward
self.padding, self.dilation, self.groups)
RuntimeError: Given groups=1, weight of size [32, 128, 1, 1], expected input[1, 64, 32, 32] to have 128 channels, but got 64 channels instead