Skip to content

RuntimeError: CUDA error: CUBLAS_STATUS_EXECUTION_FAILED #10408

@jiaqizhang123-stack

Description

@jiaqizhang123-stack

Search before asking

Question

YOLOV5 + torch1.8.0 +cuda10.2+GTX1650
OS:Windows 10
python 3.9

(mmdeploy) D:\widows_mm\yolov5-7.0>python segment/train.py --weights yolov5n-seg.pt --img 640 --batch-size 2 --data data.yaml
segment\train: weights=yolov5n-seg.pt, cfg=, data=data.yaml, hyp=data\hyps\hyp.scratch-low.yaml, epochs=100, batch_size=2, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs\train-seg, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, mask_ratio=4, no_overlap=False
github: skipping check (not a git repository), for updates see https://github.com/ultralytics/yolov5
YOLOv5 2022-11-22 Python-3.9.12 torch-1.8.0 CUDA:0 (NVIDIA GeForce GTX 1650, 4096MiB)

hyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0
TensorBoard: Start with 'tensorboard --logdir runs\train-seg', view at http://localhost:6006/
Overriding model.yaml nc=80 with nc=2

             from  n    params  module                                  arguments

0 -1 1 1760 models.common.Conv [3, 16, 6, 2, 2]
1 -1 1 4672 models.common.Conv [16, 32, 3, 2]
2 -1 1 4800 models.common.C3 [32, 32, 1]
3 -1 1 18560 models.common.Conv [32, 64, 3, 2]
4 -1 2 29184 models.common.C3 [64, 64, 2]
5 -1 1 73984 models.common.Conv [64, 128, 3, 2]
6 -1 3 156928 models.common.C3 [128, 128, 3]
7 -1 1 295424 models.common.Conv [128, 256, 3, 2]
8 -1 1 296448 models.common.C3 [256, 256, 1]
9 -1 1 164608 models.common.SPPF [256, 256, 5]
10 -1 1 33024 models.common.Conv [256, 128, 1, 1]
11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
12 [-1, 6] 1 0 models.common.Concat [1]
13 -1 1 90880 models.common.C3 [256, 128, 1, False]
14 -1 1 8320 models.common.Conv [128, 64, 1, 1]
15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
16 [-1, 4] 1 0 models.common.Concat [1]
17 -1 1 22912 models.common.C3 [128, 64, 1, False]
18 -1 1 36992 models.common.Conv [64, 64, 3, 2]
19 [-1, 14] 1 0 models.common.Concat [1]
20 -1 1 74496 models.common.C3 [128, 128, 1, False]
21 -1 1 147712 models.common.Conv [128, 128, 3, 2]
22 [-1, 10] 1 0 models.common.Concat [1]
23 -1 1 296448 models.common.C3 [256, 256, 1, False]
24 [17, 20, 23] 1 128863 models.yolo.Segment [2, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], 32, 64, [64, 128, 256]]
Model summary: 225 layers, 1886015 parameters, 1886015 gradients, 6.9 GFLOPs

Transferred 361/367 items from yolov5n-seg.pt
AMP: checks passed
optimizer: SGD(lr=0.01) with parameter groups 60 weight(decay=0.0), 63 weight(decay=0.0005), 63 bias
train: Scanning D:\widows_mm\yolov5-7.0\labelmedata\json2yolo-master\new_dir_shuang\labels\train2017... 1000 images, 0
train: WARNING Cache directory D:\widows_mm\yolov5-7.0\labelmedata\json2yolo-master\new_dir_shuang\labels is not writeable: [WinError 183] : 'D:\widows_mm\yolov5-7.0\labelmedata\json2yolo-master\new_dir_shuang\labels\train2017.cache.npy' -> 'D:\widows_mm\yolov5-7.0\labelmedata\json2yolo-master\new_dir_shuang\labels\train2017.cache'
val: Scanning D:\widows_mm\yolov5-7.0\labelmedata\json2yolo-master\new_dir_shuang\labels\train2017... 1000 images, 0 ba
val: WARNING Cache directory D:\widows_mm\yolov5-7.0\labelmedata\json2yolo-master\new_dir_shuang\labels is not writeable: [WinError 183] : 'D:\widows_mm\yolov5-7.0\labelmedata\json2yolo-master\new_dir_shuang\labels\train2017.cache.npy' -> 'D:\widows_mm\yolov5-7.0\labelmedata\json2yolo-master\new_dir_shuang\labels\train2017.cache'

AutoAnchor: 5.55 anchors/target, 1.000 Best Possible Recall (BPR). Current anchors are a good fit to dataset
Plotting labels to runs\train-seg\exp3\labels.jpg...
Image sizes 640 train, 640 val
Using 2 dataloader workers
Logging results to runs\train-seg\exp3
Starting training for 100 epochs...

  Epoch    GPU_mem   box_loss   seg_loss   obj_loss   cls_loss  Instances       Size

0%| | 0/500 00:00
Traceback (most recent call last):
File "D:\widows_mm\yolov5-7.0\segment\train.py", line 658, in
main(opt)
File "D:\widows_mm\yolov5-7.0\segment\train.py", line 554, in main
train(opt.hyp, opt, device, callbacks)
File "D:\widows_mm\yolov5-7.0\segment\train.py", line 310, in train
loss, loss_items = compute_loss(pred, targets.to(device), masks=masks.to(device).float())
File "D:\widows_mm\yolov5-7.0\utils\segment\loss.py", line 95, in call
lseg += self.single_mask_loss(mask_gti, pmask[j], proto[bi], mxyxy[j], marea[j])
File "D:\widows_mm\yolov5-7.0\utils\segment\loss.py", line 114, in single_mask_loss
pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:]) # (n,32) @ (32,80,80) -> (n,80,80)
RuntimeError: CUDA error: CUBLAS_STATUS_EXECUTION_FAILED when calling cublasGemmEx( handle, opa, opb, m, n, k, &falpha, a, CUDA_R_16F, lda, b, CUDA_R_16F, ldb, &fbeta, c, CUDA_R_16F, ldc, CUDA_R_32F, CUBLAS_GEMM_DFALT_TENSOR_OP)

Hello, when I was training my own dataset, I reported an error when calculating mask loss. Is it related to @? The environment can be tested

Additional

No response

Metadata

Metadata

Assignees

No one assigned

    Labels

    StaleStale and schedule for closing soonquestionFurther information is requested

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions