Skip to content

labels4.append(labels) UnboundLocalError: local variable 'labels' referenced before assignment #548

@Samjith888

Description

@Samjith888

I have replaced coco dataset with own datasets, which have only one class ('person'). While training, i got the following error.

`
(base) C:\Users\samjith.cp\Desktop\yolov3>python train.py --data coco.data --cfg cfg/yolov3.cfg
Namespace(accumulate=2, adam=False, arc='defaultpw', batch_size=32, bucket='', cache_images=False, cfg='cfg/yolov3.cfg', data='coco.data', device='', epochs=273, evolve=False, img_size=416, img_weights=False, multi_scale=False, name='', nosave=False, notest=False, prebias=False, rect=False, resume=False, transfer=False, var=None, weights='')
Using CPU

WARNING:root:This caffe2 python run does not have GPU support. Will run in CPU only mode.
Reading labels (357 found, 0 missing, 4 empty for 361 images): 100%|███████████████| 361/361 [00:00<00:00, 6489.34it/s]
Model Summary: 222 layers, 6.19491e+07 parameters, 6.19491e+07 gradients
Starting training for 273 epochs...

 Epoch   gpu_mem      GIoU       obj       cls     total   targets  img_size

Corrupt JPEG data: 2 extraneous bytes before marker 0xd9
0%| | 0/12 [00:00<?, ?it/s]Corrupt JPEG data: 2 extraneous bytes before marker 0xd9
Corrupt JPEG data: 1 extraneous bytes before marker 0xd9
Corrupt JPEG data: 1 extraneous bytes before marker 0xd9
Corrupt JPEG data: 2 extraneous bytes before marker 0xd9
Corrupt JPEG data: 1 extraneous bytes before marker 0xd9
Corrupt JPEG data: 2 extraneous bytes before marker 0xd9
Corrupt JPEG data: 1 extraneous bytes before marker 0xd9
Corrupt JPEG data: 1 extraneous bytes before marker 0xd9
Corrupt JPEG data: 1 extraneous bytes before marker 0xd9
Corrupt JPEG data: 2 extraneous bytes before marker 0xd9
Corrupt JPEG data: 2 extraneous bytes before marker 0xd9
Corrupt JPEG data: 1 extraneous bytes before marker 0xd9
Corrupt JPEG data: 1 extraneous bytes before marker 0xd9
Corrupt JPEG data: 2 extraneous bytes before marker 0xd9
Traceback (most recent call last):
File "train.py", line 426, in
train() # train normally
File "train.py", line 235, in train
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
File "C:\Users\samjith.cp\AppData\Local\Continuum\anaconda3\lib\site-packages\tqdm_tqdm.py", line 1005, in iter
for obj in iterable:
File "C:\Users\samjith.cp\AppData\Local\Continuum\anaconda3\lib\site-packages\torch\utils\data\dataloader.py", line 819, in next
return self._process_data(data)
File "C:\Users\samjith.cp\AppData\Local\Continuum\anaconda3\lib\site-packages\torch\utils\data\dataloader.py", line 846, in _process_data
data.reraise()
File "C:\Users\samjith.cp\AppData\Local\Continuum\anaconda3\lib\site-packages\torch_utils.py", line 369, in reraise
raise self.exc_type(msg)
UnboundLocalError: Caught UnboundLocalError in DataLoader worker process 0.
Original Traceback (most recent call last):
File "C:\Users\samjith.cp\AppData\Local\Continuum\anaconda3\lib\site-packages\torch\utils\data_utils\worker.py", line 178, in _worker_loop
data = fetcher.fetch(index)
File "C:\Users\samjith.cp\AppData\Local\Continuum\anaconda3\lib\site-packages\torch\utils\data_utils\fetch.py", line 44, in fetch
data = [self.dataset[idx] for idx in possibly_batched_index]
File "C:\Users\samjith.cp\AppData\Local\Continuum\anaconda3\lib\site-packages\torch\utils\data_utils\fetch.py", line 44, in
data = [self.dataset[idx] for idx in possibly_batched_index]
File "C:\Users\samjith.cp\Desktop\yolov3\utils\datasets.py", line 416, in getitem
img, labels = load_mosaic(self, index)
File "C:\Users\samjith.cp\Desktop\yolov3\utils\datasets.py", line 590, in load_mosaic
labels4.append(labels)
UnboundLocalError: local variable 'labels' referenced before assignment`

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions