This repository was archived by the owner on Nov 1, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 110
This repository was archived by the owner on Nov 1, 2021. It is now read-only.
using optimfn with wrapped nn modules #173
Copy link
Copy link
Open
Description
Is there anything wrong with using wrapped ``nnmodules together withoptim`.
I have code like following:. The problem is when predict is called. I keep getting the following error:
...install/share/lua/5.1/autograd/runtime/codegen/Graph.lua:40: bad argument #2 to 'fn' (expecting number or torch.DoubleTensor or torch.DoubleStorage at /tmp/luarocks_torch-scm-1-9261/torch7/generic/Tensor.c:1125)
[C]: in function 'fn'
...install/share/lua/5.1/autograd/runtime/codegen/Graph.lua:40: in function 'set'
/home/user/torch/install/share/lua/5.1/torch/Tensor.lua:458: in function 'fn'
...install/share/lua/5.1/autograd/runtime/codegen/Graph.lua:40: in function 'view'
...user/torch/install/share/lua/5.1/autograd/nnwrapper.lua:206: in function 'fn'
.../install/share/lua/5.1/autograd/runtime/codegen/Node.lua:72: in function 'evaluateForward'
...install/share/lua/5.1/autograd/runtime/codegen/Graph.lua:25: in function 'conv1'
(my stacktrace below this. first line of predict function here)
local conv1, params.conv1
conv1, params.conv1 = grad.nn.SpatialConvolutionMM(64, 128, 5, 5, 1, 1, 2, 2)
...
params = autograd.util.cast(params, "float")
function predict(params, input)
local h1 = pool1(acts1(conv1(params.conv1, input)))
....
return output
function feval(params, input, target)
local prediction = predict(params, input)
...
return loss, prediction
local df = autograd(feval, {optimize = true})
state = {
learningRate = learningRate,
momentum = momentum,
weightDecay = weightDecay
}
for i = 1, numepochs do
local optimfn, states = grad.optim.sgd(df, state, params)
for j = 1, datasize, batchSIze do
local X, target = loadInputTensor(batchSize)
local grads, loss = optimfn(X, target)
end
end
...Metadata
Metadata
Assignees
Labels
No labels