Skip to content

Summary with embeddings #42

@siddBanPsu

Description

@siddBanPsu
class TextCNN(nn.Module):
    def __init__(self, nb_words, embed_dim, embedding_matrix, max_seq_len, num_filters, num_classes):
        super(TextCNN, self).__init__()
        self.num_filters=num_filters
        self.embed = nn.Embedding(nb_words, embed_dim)
        self.dropout = nn.Dropout(0.3)
        self.conv = nn.Conv1d(embed_dim, num_filters, kernel_size=2, stride=1)
        self.fc1 = nn.Linear(num_filters, 32)
        self.fc2 = nn.Linear(32, num_classes)
        self.logsigmoid = nn.Sigmoid()

    def forward(self, x):
        x = self.embed(x)
        x = x.permute(0, 2, 1)
        x = self.dropout(x)
        x = self.conv(x).permute(0, 2, 1).max(1)[0]
        x = self.fc1(x)
        x = F.relu(x)
        x = self.dropout(x)
        x = self.fc2(x)
        return self.logsigmoid(x)
model = TextCNN(1000, 100, [], 10, 20, 3)
data = torch.from_numpy(np.array([[1,4,5], [7,7,9]]))
output = model(data)
print(output)
print(model)
print(data[0].shape)
print(summary(model, (1, 10)))

Gives error:

RuntimeError: Expected tensor for argument #1 'indices' to have scalar type Long; but got CPUFloatTensor instead (while checking arguments for embedding)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions