Skip to content

Error when launching xgboost #47

@mattvan83

Description

@mattvan83

Hi @raamana ,

I got an error when trying to launch both multi-class or binary classifications using xgboost:

multiprocessing.pool.RemoteTraceback: 
"""
Traceback (most recent call last):
  File "/homes_unix/mvanhoutte/Soft/anaconda3/envs/neuropredict/lib/python3.7/multiprocessing/pool.py", line 121, in worker
    result = (True, func(*args, **kwds))
  File "/homes_unix/mvanhoutte/Soft/anaconda3/envs/neuropredict/lib/python3.7/multiprocessing/pool.py", line 44, in mapstar
    return list(map(*args))
  File "/homes_unix/mvanhoutte/Soft/anaconda3/envs/neuropredict/lib/python3.7/site-packages/neuropredict/rhst.py", line 624, in holdout_trial_compare_datasets
    feat_select_method=feat_select_method)
  File "/homes_unix/mvanhoutte/Soft/anaconda3/envs/neuropredict/lib/python3.7/site-packages/neuropredict/rhst.py", line 102, in eval_optimized_model_on_testset
    param_grid, train_perc)
  File "/homes_unix/mvanhoutte/Soft/anaconda3/envs/neuropredict/lib/python3.7/site-packages/neuropredict/rhst.py", line 194, in optimize_pipeline_via_grid_search_CV
    gs.fit(train_data_mat, train_labels)
  File "/homes_unix/mvanhoutte/Soft/anaconda3/envs/neuropredict/lib/python3.7/site-packages/sklearn/model_selection/_search.py", line 688, in fit
    self._run_search(evaluate_candidates)
  File "/homes_unix/mvanhoutte/Soft/anaconda3/envs/neuropredict/lib/python3.7/site-packages/sklearn/model_selection/_search.py", line 1149, in _run_search
    evaluate_candidates(ParameterGrid(self.param_grid))
  File "/homes_unix/mvanhoutte/Soft/anaconda3/envs/neuropredict/lib/python3.7/site-packages/sklearn/model_selection/_search.py", line 667, in evaluate_candidates
    cv.split(X, y, groups)))
  File "/homes_unix/mvanhoutte/Soft/anaconda3/envs/neuropredict/lib/python3.7/site-packages/joblib/parallel.py", line 1003, in __call__
    if self.dispatch_one_batch(iterator):
  File "/homes_unix/mvanhoutte/Soft/anaconda3/envs/neuropredict/lib/python3.7/site-packages/joblib/parallel.py", line 834, in dispatch_one_batch
    self._dispatch(tasks)
  File "/homes_unix/mvanhoutte/Soft/anaconda3/envs/neuropredict/lib/python3.7/site-packages/joblib/parallel.py", line 753, in _dispatch
    job = self._backend.apply_async(batch, callback=cb)
  File "/homes_unix/mvanhoutte/Soft/anaconda3/envs/neuropredict/lib/python3.7/site-packages/joblib/_parallel_backends.py", line 201, in apply_async
    result = ImmediateResult(func)
  File "/homes_unix/mvanhoutte/Soft/anaconda3/envs/neuropredict/lib/python3.7/site-packages/joblib/_parallel_backends.py", line 582, in __init__
    self.results = batch()
  File "/homes_unix/mvanhoutte/Soft/anaconda3/envs/neuropredict/lib/python3.7/site-packages/joblib/parallel.py", line 256, in __call__
    for func, args, kwargs in self.items]
  File "/homes_unix/mvanhoutte/Soft/anaconda3/envs/neuropredict/lib/python3.7/site-packages/joblib/parallel.py", line 256, in <listcomp>
    for func, args, kwargs in self.items]
  File "/homes_unix/mvanhoutte/Soft/anaconda3/envs/neuropredict/lib/python3.7/site-packages/sklearn/model_selection/_validation.py", line 516, in _fit_and_score
    estimator.fit(X_train, y_train, **fit_params)
  File "/homes_unix/mvanhoutte/Soft/anaconda3/envs/neuropredict/lib/python3.7/site-packages/sklearn/pipeline.py", line 356, in fit
    self._final_estimator.fit(Xt, y, **fit_params)
  File "/homes_unix/mvanhoutte/Soft/anaconda3/envs/neuropredict/lib/python3.7/site-packages/xgboost/sklearn.py", line 732, in fit
    callbacks=callbacks)
  File "/homes_unix/mvanhoutte/Soft/anaconda3/envs/neuropredict/lib/python3.7/site-packages/xgboost/training.py", line 216, in train
    xgb_model=xgb_model, callbacks=callbacks)
  File "/homes_unix/mvanhoutte/Soft/anaconda3/envs/neuropredict/lib/python3.7/site-packages/xgboost/training.py", line 74, in _train_internal
    bst.update(dtrain, i, obj)
  File "/homes_unix/mvanhoutte/Soft/anaconda3/envs/neuropredict/lib/python3.7/site-packages/xgboost/core.py", line 1109, in update
    dtrain.handle))
  File "/homes_unix/mvanhoutte/Soft/anaconda3/envs/neuropredict/lib/python3.7/site-packages/xgboost/core.py", line 176, in _check_call
    raise XGBoostError(py_str(_LIB.XGBGetLastError()))
xgboost.core.XGBoostError: Invalid Parameter format for num_feature expect int (non-negative) but value='sqrt'
"""

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "/homes_unix/mvanhoutte/Soft/anaconda3/envs/neuropredict/bin/neuropredict", line 8, in <module>
    sys.exit(main())
  File "/homes_unix/mvanhoutte/Soft/anaconda3/envs/neuropredict/lib/python3.7/site-packages/neuropredict/__main__.py", line 11, in main
    run_workflow.cli()
  File "/homes_unix/mvanhoutte/Soft/anaconda3/envs/neuropredict/lib/python3.7/site-packages/neuropredict/run_workflow.py", line 976, in cli
    grid_search_level, classifier, feat_select_method)
  File "/homes_unix/mvanhoutte/Soft/anaconda3/envs/neuropredict/lib/python3.7/site-packages/neuropredict/run_workflow.py", line 951, in prepare_and_run
    options_path=options_path)
  File "/homes_unix/mvanhoutte/Soft/anaconda3/envs/neuropredict/lib/python3.7/site-packages/neuropredict/rhst.py", line 382, in run
    cv_results = pool.map(partial_func_holdout, range(num_repetitions))
  File "/homes_unix/mvanhoutte/Soft/anaconda3/envs/neuropredict/lib/python3.7/multiprocessing/pool.py", line 268, in map
    return self._map_async(func, iterable, mapstar, chunksize).get()
  File "/homes_unix/mvanhoutte/Soft/anaconda3/envs/neuropredict/lib/python3.7/multiprocessing/pool.py", line 657, in get
    raise self._value
xgboost.core.XGBoostError: Invalid Parameter format for num_feature expect int (non-negative) but value='sqrt'

Could you help me with this?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions