Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 7 additions & 0 deletions reasoning_gym/probability/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
"""
Probability reasoning tasks.
"""

from .coin_flip import CoinFlipConfig, CoinFlipCurriculum, CoinFlipDataset

__all__ = ["CoinFlipDataset", "CoinFlipConfig", "CoinFlipCurriculum"]
169 changes: 169 additions & 0 deletions reasoning_gym/probability/coin_flip.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,169 @@
import math
import random
from dataclasses import dataclass
from fractions import Fraction
from typing import Optional

from reasoning_gym.dataset import ProceduralDataset

from ..coaching import BaseCurriculum, RangeAttributeDefinition
from ..factory import register_dataset

DATASET_NAME = "coin_flip"


@dataclass
class CoinFlipConfig:
"""Configuration for coin flip probability task generation."""

min_trials: int = 3
max_trials: int = 15
allow_exact: bool = True # whether to allow "exactly k heads" problems
allow_at_least: bool = True # whether to allow "at least k heads" problems
seed: Optional[int] = None
size: int = 500

def validate(self) -> None:
assert self.size > 0, "size must be positive"
assert self.min_trials > 0, "min_trials must be positive"
assert self.max_trials >= self.min_trials, "max_trials must be >= min_trials"
assert self.allow_exact or self.allow_at_least, "At least one of allow_exact or allow_at_least must be True"


class CoinFlipDataset(ProceduralDataset):
"""Generates coin-flip probability problems (exact k heads / at-least k heads)."""

def __init__(self, config: CoinFlipConfig):
super().__init__(config=config, seed=config.seed, size=config.size)

def __getitem__(self, idx: int) -> dict:
"""
Generate a single N coin flip probability problem.
Args:
idx: Index of the item to generate

Returns:
dict with keys:
- question: str, the formatted arithmetic expression
- answer: str, the ground truth result
- metadata: dict with generation parameters
"""
# Create deterministic RNG from base seed and idx
rng = random.Random(self.seed + idx)

# Pick number of trials
n = rng.randint(self.config.min_trials, self.config.max_trials)

available_types = []
if self.config.allow_exact:
available_types.append("exact")
if self.config.allow_at_least:
available_types.append("at_least")

problem_type = rng.choice(available_types)

if problem_type == "exact":
k = rng.randint(0, n)
question = f"What is the probability of getting exactly {k} heads in {n} fair coin flips?"
prob = self._prob_exact_heads(n, k) # compute actual answer as float

else:
k = rng.randint(0, n)
question = f"What is the probability of getting at least {k} heads in {n} fair coin flips?"
prob = self._prob_at_least_heads(n, k) # compute actual answer as float

answer_str = format(prob, ".10g")

return {
"question": question,
"answer": answer_str,
"metadata": {
"source_dataset": DATASET_NAME,
"source_index": idx,
"num_trials": n,
"k_heads": k,
"problem_type": problem_type,
"rational": {
"numerator": self._rational_numerator(n, k, problem_type),
"denominator": 2**n,
},
"difficulty": {
"num_trials": (self.config.min_trials, self.config.max_trials),
},
},
}

def _prob_exact_heads(self, n: int, k: int) -> float:
"""Return probability of exactly k heads in n fair coin tosses."""
comb = math.comb(n, k)
return comb * (0.5**n)

def _prob_at_least_heads(self, n: int, k: int) -> float:
"""Return probability of at least k heads in n fair coin tosses."""
total = sum(math.comb(n, i) for i in range(k, n + 1))
return total * (0.5**n)

def _rational_numerator(self, n: int, k: int, problem_type: str) -> int:
"""Return the numerator of the probability as a rational number."""
if problem_type == "exact":
return math.comb(n, k)
else:
return sum(math.comb(n, i) for i in range(k, n + 1))

def score_answer(self, answer: Optional[str], entry: dict, tol: float = 1e-4) -> float:
"""
Compute reward for LLM answer against oracle probability.
Handles decimals, fractions, small numeric errors, and extra text.
"""
reward = 0.0
oracle_answer = entry["answer"]

if answer is None or len(answer.strip()) == 0:
return reward

answer = answer.replace(",", "")
oracle_answer = oracle_answer.replace(",", "")

try:
answer_float = float(Fraction(answer))
oracle_answer_float = float(Fraction(oracle_answer))
except (ValueError, ZeroDivisionError):
return reward

if abs(answer_float - oracle_answer_float) <= tol:
return 1.0

answer_str = f"{answer_float:.10g}"
oracle_answer_str = f"{oracle_answer_float:.10g}"

# Partial Reward for matching prefix
match_len = 0
for a_char, o_char in zip(answer_str, oracle_answer_str):
if a_char == o_char:
match_len += 1
else:
break

reward = match_len / min(len(oracle_answer_str), len(answer_str))

return reward


class CoinFlipCurriculum(BaseCurriculum):
"""Curriculum that allows scaling the number of tosses."""

def __init__(self):
super().__init__(CoinFlipCurriculum.__name__, CoinFlipConfig)
self._define_attributes(
RangeAttributeDefinition(
name="num_trials",
levels=list(range(3, 16)), # starting from 3 upto 15 tosses
default_level=0,
description="Number of coin tosses (difficulty)",
lower_field_name="min_trials",
upper_field_name="max_trials",
),
)


register_dataset(DATASET_NAME, CoinFlipDataset, CoinFlipConfig, CoinFlipCurriculum)
106 changes: 106 additions & 0 deletions tests/test_coin_flip.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,106 @@
from fractions import Fraction

import pytest

from reasoning_gym.probability import CoinFlipConfig, CoinFlipCurriculum, CoinFlipDataset


def test_coin_flip_config_validation():
"""Test that invalid configs raise errors"""
with pytest.raises(AssertionError):
config = CoinFlipConfig(size=0)
config.validate()

with pytest.raises(AssertionError):
config = CoinFlipConfig(min_trials=0)
config.validate()

with pytest.raises(AssertionError):
config = CoinFlipConfig(min_trials=5, max_trials=3)
config.validate()

with pytest.raises(AssertionError):
config = CoinFlipConfig(allow_exact=False, allow_at_least=False)
config.validate()


def test_coin_flip_deterministic():
"""Dataset generates same items with same seed"""
config = CoinFlipConfig(size=10, seed=42)
dataset1 = CoinFlipDataset(config)
dataset2 = CoinFlipDataset(config)
for i in range(len(dataset1)):
assert dataset1[i] == dataset2[i]


def test_coin_flip_items():
"""Test basic properties of generated items"""
config = CoinFlipConfig(min_trials=3, max_trials=6, size=7, seed=42)
dataset = CoinFlipDataset(config)

for i in range(len(dataset)):
item = dataset[i]
assert isinstance(item, dict)
assert "question" in item
assert "answer" in item
assert 0.0 <= float(item["answer"]) <= 1.0
assert "metadata" in item

metadata = item["metadata"]
assert "num_trials" in metadata
assert "k_heads" in metadata
assert "problem_type" in metadata
assert metadata["problem_type"] in ["exact", "at_least"]

rational = metadata["rational"]
assert rational["denominator"] == 2 ** metadata["num_trials"]
assert rational["numerator"] > 0


def test_coin_flip_score_answer():
"""Test full and partial reward behavior"""
config = CoinFlipConfig(size=200, seed=42)
dataset = CoinFlipDataset(config)

for i in range(len(dataset)):
entry = dataset[i]
answer = entry["answer"]

# Exact answer -> full reward
reward = dataset.score_answer(answer, entry)
assert reward == 1.0

# Slightly wrong answer -> partial reward
if float(answer) + 0.01 <= 1.0:
slightly_wrong = str(float(answer) + 0.01)
else:
slightly_wrong = str(float(answer) - 0.01)
reward_partial = dataset.score_answer(slightly_wrong, entry)
assert 0.0 <= reward_partial <= 1.0


def test_coin_flip_curriculum():
"""Test curriculum generates valid configurations and increments attributes"""

curriculum = CoinFlipCurriculum()
base_value = {"size": 100, "seed": 32}

cfg = curriculum.generate_configuration(base_value)

assert isinstance(cfg, CoinFlipConfig)
assert cfg.size == 100
assert cfg.seed == 32
assert cfg.min_trials == 3
assert cfg.max_trials == 3

# Increment attribute level for num_trials
curriculum.increment_attr_level("num_trials")
cfg_inc = curriculum.generate_configuration(base_value)
assert cfg_inc.min_trials == 3
assert cfg_inc.max_trials == 4

# Decrement attribute level
curriculum.decrement_attr_level("num_trials")
cfg_dec = curriculum.generate_configuration(base_value)
assert cfg_dec.min_trials == 3
assert cfg_dec.max_trials == 3