-
Notifications
You must be signed in to change notification settings - Fork 2k
Closed as not planned
Closed as not planned
Copy link
Description
See below. This happens with every plot I try.
The full error is here:
---------------------------------------------------------------------------
OptionError Traceback (most recent call last)
Cell In[108], line 1
----> 1 sns.kdeplot(data=test_data)
File /opt/conda/lib/python3.10/site-packages/seaborn/_decorators.py:46, in _deprecate_positional_args.<locals>.inner_f(*args, **kwargs)
36 warnings.warn(
37 "Pass the following variable{} as {}keyword arg{}: {}. "
38 "From version 0.12, the only valid positional argument "
(...)
43 FutureWarning
44 )
45 kwargs.update({k: arg for k, arg in zip(sig.parameters, args)})
---> 46 return f(**kwargs)
File /opt/conda/lib/python3.10/site-packages/seaborn/distributions.py:1770, in kdeplot(x, y, shade, vertical, kernel, bw, gridsize, cut, clip, legend, cumulative, shade_lowest, cbar, cbar_ax, cbar_kws, ax, weights, hue, palette, hue_order, hue_norm, multiple, common_norm, common_grid, levels, thresh, bw_method, bw_adjust, log_scale, color, fill, data, data2, warn_singular, **kwargs)
1767 if color is not None:
1768 plot_kws["color"] = color
-> 1770 p.plot_univariate_density(
1771 multiple=multiple,
1772 common_norm=common_norm,
1773 common_grid=common_grid,
1774 fill=fill,
1775 legend=legend,
1776 warn_singular=warn_singular,
1777 estimate_kws=estimate_kws,
1778 **plot_kws,
1779 )
1781 else:
1783 p.plot_bivariate_density(
1784 common_norm=common_norm,
1785 fill=fill,
(...)
1795 **kwargs,
1796 )
File /opt/conda/lib/python3.10/site-packages/seaborn/distributions.py:928, in _DistributionPlotter.plot_univariate_density(self, multiple, common_norm, common_grid, warn_singular, fill, legend, estimate_kws, **plot_kws)
925 log_scale = self._log_scaled(self.data_variable)
927 # Do the computation
--> 928 densities = self._compute_univariate_density(
929 self.data_variable,
930 common_norm,
931 common_grid,
932 estimate_kws,
933 log_scale,
934 warn_singular,
935 )
937 # Adjust densities based on the `multiple` rule
938 densities, baselines = self._resolve_multiple(densities, multiple)
File /opt/conda/lib/python3.10/site-packages/seaborn/distributions.py:303, in _DistributionPlotter._compute_univariate_density(self, data_variable, common_norm, common_grid, estimate_kws, log_scale, warn_singular)
299 common_norm = False
301 densities = {}
--> 303 for sub_vars, sub_data in self.iter_data("hue", from_comp_data=True):
304
305 # Extract the data points from this sub set and remove nulls
306 sub_data = sub_data.dropna()
307 observations = sub_data[data_variable]
File /opt/conda/lib/python3.10/site-packages/seaborn/_core.py:983, in VectorPlotter.iter_data(self, grouping_vars, reverse, from_comp_data)
978 grouping_vars = [
979 var for var in grouping_vars if var in self.variables
980 ]
982 if from_comp_data:
--> 983 data = self.comp_data
984 else:
985 data = self.plot_data
File /opt/conda/lib/python3.10/site-packages/seaborn/_core.py:1054, in VectorPlotter.comp_data(self)
1050 axis = getattr(ax, f"{var}axis")
1052 # Use the converter assigned to the axis to get a float representation
1053 # of the data, passing np.nan or pd.NA through (pd.NA becomes np.nan)
-> 1054 with pd.option_context('mode.use_inf_as_null', True):
1055 orig = self.plot_data[var].dropna()
1056 comp_col = pd.Series(index=orig.index, dtype=float, name=var)
File /opt/conda/lib/python3.10/site-packages/pandas/_config/config.py:441, in option_context.__enter__(self)
440 def __enter__(self) -> None:
--> 441 self.undo = [(pat, _get_option(pat, silent=True)) for pat, val in self.ops]
443 for pat, val in self.ops:
444 _set_option(pat, val, silent=True)
File /opt/conda/lib/python3.10/site-packages/pandas/_config/config.py:441, in <listcomp>(.0)
440 def __enter__(self) -> None:
--> 441 self.undo = [(pat, _get_option(pat, silent=True)) for pat, val in self.ops]
443 for pat, val in self.ops:
444 _set_option(pat, val, silent=True)
File /opt/conda/lib/python3.10/site-packages/pandas/_config/config.py:135, in _get_option(pat, silent)
134 def _get_option(pat: str, silent: bool = False) -> Any:
--> 135 key = _get_single_key(pat, silent)
137 # walk the nested dict
138 root, k = _get_root(key)
File /opt/conda/lib/python3.10/site-packages/pandas/_config/config.py:121, in _get_single_key(pat, silent)
119 if not silent:
120 _warn_if_deprecated(pat)
--> 121 raise OptionError(f"No such keys(s): {repr(pat)}")
122 if len(keys) > 1:
123 raise OptionError("Pattern matched multiple keys")
OptionError: No such keys(s): 'mode.use_inf_as_null'
This also happens when I try both of the following:
pd.set_option('mode.use_inf_as_na', True)
sns.kdeplot(data=test_data)
pd.set_option('mode.use_inf_as_na', False)
sns.kdeplot(data=test_data)
Metadata
Metadata
Assignees
Labels
No labels