-
Notifications
You must be signed in to change notification settings - Fork 2
Description
Black 1996 uses Geman-McClure robust M-estimator.
@article{black1996robust,
title={The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields},
author={Black, Michael J and Anandan, Paul},
journal={Computer vision and image understanding},
volume={63},
number={1},
pages={75--104},
year={1996},
publisher={Elsevier}
}Zhang 1997 presents parameters estimation from noisy data, including robust techniques
such as M-estimators and least median of squares (but not Ransac!).
@article{zhang1997parameter,
title={Parameter estimation techniques: A tutorial with application to conic fitting},
author={Zhang, Zhengyou},
journal={Image and vision Computing},
volume={15},
number={1},
pages={59--76},
year={1997},
publisher={Elsevier}
}Stewart 1999 presents usage of M-estimators and least median squares (LMS)
and RANSAC in the context of computer vision.
@article{stewart1999robust,
title={Robust parameter estimation in computer vision},
author={Stewart, Charles V},
journal={SIAM review},
volume={41},
number={3},
pages={513--537},
year={1999},
publisher={SIAM}
}In part 2 of Baker 2003, the authors show how a robust M-estimator can be used
within an inverse compositional iteratively reweighted least squares (IRLS) algorithm
@inproceedings{baker2003lucas,
title={Lucas-kanade 20 years on: A unifying framework: Part 2},
author={Baker, Simon and Gross, Ralph and Ishikawa, Takahiro and Matthews, Iain},
booktitle={International Journal of Computer Vision},
year={2003},
organization={Citeseer}
}In Audras 2011, the authors use a robust M-estimator
@inproceedings{audras2011real,
title={Real-time dense appearance-based SLAM for RGB-D sensors},
author={Audras, Cedric and Comport, A and Meilland, Maxime and Rives, Patrick},
booktitle={Australasian Conf. on Robotics and Automation},
volume={2},
pages={2--2},
year={2011}
}Klose 2013 uses robust M-estimator Huber and Tukey.
Removes median abs res, and estimate std before computing weights.
Also introduce global affine illumination changes.
@inproceedings{klose2013efficient,
title={Efficient compositional approaches for real-time robust direct visual odometry from RGB-D data},
author={Klose, Sebastian and Heise, Philipp and Knoll, Alois},
booktitle={2013 IEEE/RSJ International Conference on Intelligent Robots and Systems},
pages={1100--1106},
year={2013},
organization={IEEE}
}In Kerl 2013, they use a t-distribution instead of M-estimator.
@inproceedings{kerl2013robust,
title={Robust odometry estimation for RGB-D cameras},
author={Kerl, Christian and Sturm, J{\"u}rgen and Cremers, Daniel},
booktitle={2013 IEEE international conference on robotics and automation},
pages={3748--3754},
year={2013},
organization={IEEE}
}Gutierrez 2015 evaluate huber, tukey and Student t-distribution. Find that t-dist is best and more stable.
@inproceedings{gutierrez2015inverse,
title={Inverse depth for accurate photometric and geometric error minimisation in RGB-D dense visual odometry},
author={Guti{\'e}rrez-G{\'o}mez, Daniel and Mayol-Cuevas, Walterio and Guerrero, Josechu J},
booktitle={2015 IEEE International Conference on Robotics and Automation (ICRA)},
pages={83--89},
year={2015},
organization={IEEE}
}