Skip to content

modelscope/ms-enclave

Repository files navigation

ms-enclave

A modular and stable sandbox runtime environment

Overview

ms-enclave is a modular and stable sandbox runtime environment that provides a secure isolated execution environment for applications. It achieves strong isolation through Docker containers, with accompanying local/HTTP managers and an extensible tool system, enabling you to safely and efficiently execute code in a controlled environment.

  • 🔒 Secure Isolation: Full isolation and resource limitation based on Docker
  • 🧩 Modular: Extensible sandbox and tools (registration factory)
  • ⚡ Stable Performance: Simple implementation, fast startup, lifecycle management
  • 🌐 Remote Management: Built-in FastAPI service, supports HTTP management
  • 🔧 Tool System: Standardized tools enabled by sandbox type (OpenAI-style schema)

System Requirements

  • Python >= 3.10
  • Operating System: Linux, macOS, or Windows with Docker support
  • Docker daemon running locally (Notebook sandbox requires port 8888 open)

Installation

Install from PyPI

pip install ms-enclave

Install from Source

git clone https://github.com/modelscope/ms-enclave.git
cd ms-enclave
pip install -e .

Quick Start: Minimal Example (SandboxFactory)

Tools need to be explicitly enabled in the tools_config setting, otherwise they won't be registered.

import asyncio
from ms_enclave.sandbox.boxes import SandboxFactory
from ms_enclave.sandbox.model import DockerSandboxConfig, SandboxType

async def main():
    config = DockerSandboxConfig(
        image='python:3.11-slim',
        memory_limit='512m',
        tools_config={
            'python_executor': {},
            'file_operation': {},
            'shell_executor': {}
        }
    )

    async with SandboxFactory.create_sandbox(SandboxType.DOCKER, config) as sandbox:
        # 1) Write a file
        await sandbox.execute_tool('file_operation', {
            'operation': 'write', 'file_path': '/sandbox/hello.txt', 'content': 'hi from enclave'
        })
        # 2) Execute Python code
        result = await sandbox.execute_tool('python_executor', {
            'code': "print('Hello from sandbox!')\nprint(open('/sandbox/hello.txt').read())"
        })
        print(result.output)

asyncio.run(main())

Typical Usage Scenarios and Examples

  • Directly using SandboxFactory: Create/destroy sandboxes in a single process—lightweight; suitable for scripts or one-off tasks
  • Using LocalSandboxManager: Manage the lifecycle/cleanup of multiple sandboxes locally; suitable for service-oriented or multi-task parallel scenarios
  • Using HttpSandboxManager: Unified sandbox management through remote HTTP services; suitable for cross-machine/distributed or more isolated deployments

1) Direct Sandbox Creation: SandboxFactory (Lightweight, Temporary)

Usage Scenarios:

  • Temporarily execute code in scripts or microservices
  • Fine-grained control over sandbox lifecycle (cleanup upon context exit)

Example (Docker Sandbox + Python Execution):

import asyncio
from ms_enclave.sandbox.boxes import SandboxFactory
from ms_enclave.sandbox.model import DockerSandboxConfig, SandboxType

async def main():
    cfg = DockerSandboxConfig(
        tools_config={'python_executor': {}}
    )
    async with SandboxFactory.create_sandbox(SandboxType.DOCKER, cfg) as sb:
        r = await sb.execute_tool('python_executor', {
            'code': 'import platform; print(platform.python_version())'
        })
        print(r.output)

asyncio.run(main())

2) Local Unified Management: LocalSandboxManager (Multi-Sandbox, Lifecycle Management)

Usage Scenarios:

  • Create/manage multiple sandboxes within the same process (creation, query, stop, periodic cleanup)
  • Unified view for monitoring stats and health

Example:

import asyncio
from ms_enclave.sandbox.manager import LocalSandboxManager
from ms_enclave.sandbox.model import DockerSandboxConfig, SandboxType

async def main():
    async with LocalSandboxManager() as manager:
        cfg = DockerSandboxConfig(tools_config={'shell_executor': {}})
        sandbox_id = await manager.create_sandbox(SandboxType.DOCKER, cfg)

        # Execute command
        res = await manager.execute_tool(sandbox_id, 'shell_executor', {'command': 'echo hello'})
        print(res.output.strip())  # hello

        # View list
        infos = await manager.list_sandboxes()
        print([i.id for i in infos])

        # Stop and delete
        await manager.stop_sandbox(sandbox_id)
        await manager.delete_sandbox(sandbox_id)

asyncio.run(main())

3) Remote Unified Management: HttpSandboxManager (Cross-Machine/Isolated Deployment)

Usage Scenarios:

  • Run sandbox services on dedicated hosts/containers, invoke remotely via HTTP
  • Share a secure controlled sandbox cluster among multiple applications

Start the service (choose one):

# Option A: Command line
ms-enclave server --host 0.0.0.0 --port 8000

# Option B: Python script
python -c "from ms_enclave.sandbox import create_server; create_server().run(host='0.0.0.0', port=8000)"

Client Example:

import asyncio
from ms_enclave.sandbox.manager import HttpSandboxManager
from ms_enclave.sandbox.model import DockerSandboxConfig, SandboxType

async def main():
    async with HttpSandboxManager(base_url='http://127.0.0.1:8000') as m:
        cfg = DockerSandboxConfig(tools_config={'python_executor': {}})
        sid = await m.create_sandbox(SandboxType.DOCKER, cfg)
        r = await m.execute_tool(sid, 'python_executor', {'code': 'print("Hello remote")'})
        print(r.output)
        await m.delete_sandbox(sid)

asyncio.run(main())

Sandbox Types and Tool Support

Currently Supported Sandbox Types:

  • DOCKER (General-purpose container execution)

    • Supported tools:
      • python_executor (execute Python code)
      • shell_executor (execute Shell commands)
      • file_operation (read/write/delete/list files)
    • Features: Configurable memory/CPU limits, volume mounts, network toggling, privileged mode, port mapping
  • DOCKER_NOTEBOOK (Jupyter Kernel Gateway environment)

    • Supported tools:
      • notebook_executor (execute code via Jupyter Kernel, supports context saving)
    • Note: This type only loads notebook_executor; other DOCKER-specific tools won't be enabled in this sandbox.
    • Dependencies: Requires port 8888 exposed and network enabled

Tool Loading Rules:

  • Tools are initialized and made available only when explicitly declared in tools_config.
  • Tools validate required_sandbox_type; unmatched types will be ignored automatically.

Example:

DockerSandboxConfig(tools_config={'python_executor': {}, 'shell_executor': {}, 'file_operation': {}})
DockerNotebookConfig(tools_config={'notebook_executor': {}})

Common Configuration Options

  • image: Docker image name (e.g., python:3.11-slim or jupyter-kernel-gateway)
  • memory_limit: Memory limit (e.g., 512m / 1g)
  • cpu_limit: CPU limit (float > 0)
  • volumes: Volume mounts, e.g., {host_path: {"bind": "/container/path", "mode": "rw"}}
  • ports: Port mappings, e.g., { "8888/tcp": ("127.0.0.1", 8888) }
  • network_enabled: Enable network (Notebook sandbox requires True)
  • remove_on_exit: Automatically remove container on exit (default True)

Error Handling and Debugging

result = await sandbox.execute_tool('python_executor', {'code': 'print(1/0)'})
if result.error:
    print('Error:', result.error)
else:
    print('Output:', result.output)

Development and Testing

# Clone the repository
git clone https://github.com/modelscope/ms-enclave.git
cd ms-enclave

# Setup virtual environment
python -m venv venv
source venv/bin/activate  # Windows: venv\Scripts\activate

# Install dependencies
pip install -e ".[dev]"

# Run tests
pytest

# Run examples (provided in the repository)
python examples/sandbox_usage_examples.py
python examples/local_manager_example.py
python examples/server_manager_example.py

Available Tools

  • python_executor: Execute Python code (DOCKER)
  • shell_executor: Execute Shell commands (DOCKER)
  • file_operation: Read/Write/Delete/List files (DOCKER)
  • notebook_executor: Execute via Jupyter Kernel (DOCKER_NOTEBOOK)
  • You can also register custom tools via the Tool factory (@register_tool).

Contribution

We welcome contributions! Please check CONTRIBUTING.md for details.

Steps to Contribute

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/amazing-feature
  3. Develop and add tests
  4. Run local tests: pytest
  5. Commit changes: git commit -m 'Add amazing feature'
  6. Push the branch: git push origin feature/amazing-feature
  7. Submit a Pull Request

License

This project is licensed under the Apache 2.0 License. See LICENSE for details.

About

No description, website, or topics provided.

Resources

License

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published