Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,11 @@
See `?regr.randomForest` for more details.
`regr.ranger` relies on the functions provided by the package ("jackknife" and "infjackknife" (default))
(@jakob-r, #1784)
- `regr.gbm` now supports `quantile distribution` (@bthieurmel, #2603)

## functions - general
- `getClassWeightParam()` now also works for Wrapper* Models and ensemble models (@ja-thomas, #891)
- added `getLearnerNote()` to query the "Note" slot of a learner (@alona-sydorova, #2086)
- `e1071::svm()` now only uses the formula interface if factors are present. This change is supposed to prevent from "stack overflow" issues some users encountered when using large datasets. See #1738 for more information. (@mb706, #1740)

## learners - new
Expand Down
26 changes: 20 additions & 6 deletions R/RLearner_regr_gbm.R
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ makeRLearner.regr.gbm = function() {
cl = "regr.gbm",
package = "gbm",
par.set = makeParamSet(
makeDiscreteLearnerParam(id = "distribution", default = "gaussian", values = c("gaussian", "laplace", "poisson", "tdist")),
makeDiscreteLearnerParam(id = "distribution", default = "gaussian", values = c("gaussian", "laplace", "poisson", "tdist", "quantile")),
# FIXME default for distribution in gbm() is bernoulli
makeIntegerLearnerParam(id = "n.trees", default = 100L, lower = 1L),
makeIntegerLearnerParam(id = "cv.folds", default = 0L),
Expand All @@ -13,6 +13,8 @@ makeRLearner.regr.gbm = function() {
makeNumericLearnerParam(id = "shrinkage", default = 0.001, lower = 0),
makeNumericLearnerParam(id = "bag.fraction", default = 0.5, lower = 0, upper = 1),
makeNumericLearnerParam(id = "train.fraction", default = 1, lower = 0, upper = 1),
makeNumericLearnerParam(id = "alpha", default = 0.5, lower = 0, upper = 1,
requires = quote(distribution == "quantile")),
makeLogicalLearnerParam(id = "keep.data", default = TRUE, tunable = FALSE),
makeLogicalLearnerParam(id = "verbose", default = FALSE, tunable = FALSE)
),
Expand All @@ -28,13 +30,25 @@ makeRLearner.regr.gbm = function() {
#' @export
trainLearner.regr.gbm = function(.learner, .task, .subset, .weights = NULL, ...) {
f = getTaskFormula(.task)
if (is.null(.weights)) {
f = getTaskFormula(.task)
gbm::gbm(f, data = getTaskData(.task, .subset), ...)

params = list(...)
if ("alpha" %in% names(params)) {
alpha = params$alpha
params$alpha = NULL
} else {
f = getTaskFormula(.task)
gbm::gbm(f, data = getTaskData(.task, .subset), weights = .weights, ...)
alpha = 0.5
}
if (params$distribution == "quantile") {
params$distribution = list(name = "quantile", alpha = alpha)
}
params$formula = f
params$data = getTaskData(.task, .subset)

if (!is.null(.weights)) {
params$weights = .weights
}

do.call(gbm::gbm, params)
}

#' @export
Expand Down
11 changes: 8 additions & 3 deletions tests/testthat/test_regr_gbm.R
Original file line number Diff line number Diff line change
Expand Up @@ -5,16 +5,17 @@ test_that("regr_gbm", {

parset.list = list(
list(),
list(n.trees = 600),
list(interaction.depth = 2)
list(n.trees = 600, distribution = "gaussian"),
list(interaction.depth = 2, distribution = "gaussian"),
list(distribution = list(name = "quantile", alpha = 0.2))
)


old.predicts.list = list()

for (i in seq_along(parset.list)) {
parset = parset.list[[i]]
pars = list(regr.formula, data = regr.train, distribution = "gaussian")
pars = list(regr.formula, data = regr.train)
pars = c(pars, parset)
set.seed(getOption("mlr.debug.seed"))
capture.output({
Expand All @@ -25,6 +26,10 @@ test_that("regr_gbm", {
old.predicts.list[[i]] = p
}

# Different way to pass quantile distribution in mlr
parset.list[[4]]$distribution = "quantile"
parset.list[[4]]$alpha = 0.2

testSimpleParsets("regr.gbm", regr.df, regr.target, regr.train.inds, old.predicts.list, parset.list)
})

Expand Down