Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 2 additions & 3 deletions R/BaseWrapper.R
Original file line number Diff line number Diff line change
@@ -1,8 +1,7 @@
makeBaseWrapper = function(id, type, next.learner, package = character(0L), par.set = makeParamSet(),
par.vals = list(), learner.subclass, model.subclass) {

if (inherits(next.learner, "OptWrapper"))
stop("Cannot wrap an optimization wrapper with something else!")
if (inherits(next.learner, "OptWrapper") && is.element("TuneWrapper", learner.subclass))
stop("Cannot wrap a tuning wrapper around another optimization wrapper!")
ns = intersect(names(par.set$pars), names(next.learner$par.set$pars))
if (length(ns) > 0L)
stopf("Hyperparameter names in wrapper clash with base learner names: %s", collapse(ns))
Expand Down
47 changes: 47 additions & 0 deletions tests/testthat/test_base_BaseWrapper.R
Original file line number Diff line number Diff line change
Expand Up @@ -22,3 +22,50 @@ test_that("BaseWrapper", {
lrn2.rm = removeHyperPars(lrn2, names(getHyperPars(lrn2)))
expect_equal(length(getHyperPars(lrn2.rm)), 0)
})

test_that("Joint model performance estimation, tuning, and model performance", {
lrn = makeLearner("classif.ksvm", predict.type = "prob")
lrn2 = makeTuneWrapper(
learner = lrn,
par.set = makeParamSet(
makeDiscreteParam("C", values = 2 ^ (-2:2)),
makeDiscreteParam("sigma", values = 2 ^ (-2:2))
),
measures = list(auc, acc),
control = makeTuneControlRandom(maxit = 3L),
resampling = makeResampleDesc(method = "Holdout")
)
lrn3 = makeFeatSelWrapper(
learner = lrn2,
measures = list(auc, acc),
control = makeFeatSelControlRandom(maxit = 3L),
resampling = makeResampleDesc(method = "Holdout")
)
bmrk = benchmark(lrn3, pid.task, makeResampleDesc(method = "Holdout"))
expect_is(bmrk, "BenchmarkResult")
})

test_that("Error when wrapping tune wrapper around another optimization wrapper", {
expect_error({
lrn = makeLearner("classif.ksvm", predict.type = "prob")
lrn2 = makeFeatSelWrapper(
learner = lrn,
measures = list(auc, acc),
control = makeFeatSelControlRandom(maxit = 3L),
resampling = makeResampleDesc(method = "Holdout")
)
lrn3 = makeTuneWrapper(
learner = lrn2,
par.set = makeParamSet(
makeDiscreteParam("C", values = 2 ^ (-2:2)),
makeDiscreteParam("sigma", values = 2 ^ (-2:2))
),
measures = list(auc, acc),
control = makeTuneControlRandom(maxit = 3L),
resampling = makeResampleDesc(method = "Holdout")
)
bmrk = benchmark(lrn3, pid.task)
}, "Cannot wrap a tuning wrapper around another optimization wrapper!")
})