-
Notifications
You must be signed in to change notification settings - Fork 425
Closed
Description
============================= test session starts ==============================
platform linux -- Python 3.12.3, pytest-8.3.2, pluggy-1.5.0 -- /home/adas/mljar/mljar-supervised/venv/bin/python3
cachedir: .pytest_cache
rootdir: /home/adas/mljar/mljar-supervised
configfile: pytest.ini
plugins: cov-5.0.0
collecting ... collected 1 item
tests/tests_automl/test_targets.py::AutoMLTargetsTest::test_regression_missing_target FAILED
=================================== FAILURES ===================================
_______________ AutoMLTargetsTest.test_regression_missing_target _______________
self = <tests.tests_automl.test_targets.AutoMLTargetsTest testMethod=test_regression_missing_target>
def test_regression_missing_target(self):
X = np.random.rand(self.rows, 3)
X = pd.DataFrame(X, columns=[f"f{i}" for i in range(3)])
y = pd.Series(np.random.rand(self.rows), name="target")
y.iloc[1] = None
automl = AutoML(
results_path=self.automl_dir,
total_time_limit=1,
algorithms=["Xgboost"],
train_ensemble=False,
explain_level=0,
start_random_models=1,
)
> automl.fit(X, y)
tests/tests_automl/test_targets.py:304:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
supervised/automl.py:432: in fit
return self._fit(X, y, sample_weight, cv, sensitive_features)
supervised/base_automl.py:967: in _fit
X, y, sample_weight, sensitive_features = self._build_dataframe(
supervised/base_automl.py:789: in _build_dataframe
X, y, sample_weight, sensitive_features = ExcludeRowsMissingTarget.transform(
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
X = f0 f1 f2
0 0.428266 0.400413 0.520708
1 0.240960 0.342989 0.285674
2 0.041829 0.516... 0.954445 0.989042
47 0.036140 0.744682 0.704169
48 0.647842 0.012628 0.719164
49 0.579543 0.874871 0.058259
y = 0 0.179094
1 NaN
2 0.678937
3 0.052738
4 0.357631
5 0.983330
6 0.233370
7 0.56043...
44 0.117175
45 0.436181
46 0.289724
47 0.862779
48 0.475552
49 0.649819
Name: target, dtype: float64
sample_weight = None, sensitive_features = None, warn = True
@staticmethod
def transform(
X=None, y=None, sample_weight=None, sensitive_features=None, warn=False
):
if y is None:
return X, y, sample_weight, sensitive_features
y_missing = pd.isnull(y)
if np.sum(np.array(y_missing)) == 0:
return X, y, sample_weight, sensitive_features
logger.debug("Exclude rows with missing target values")
if warn:
> warnings.warn(
"There are samples with missing target values in the data which will be excluded for further analysis"
)
E UserWarning: There are samples with missing target values in the data which will be excluded for further analysis
supervised/preprocessing/exclude_missing_target.py:25: UserWarning
=========================== short test summary info ============================
FAILED tests/tests_automl/test_targets.py::AutoMLTargetsTest::test_regression_missing_target
============================== 1 failed in 1.90s ===============================
Metadata
Metadata
Assignees
Labels
No labels