-
Notifications
You must be signed in to change notification settings - Fork 425
Closed
Description
============================= test session starts ==============================
platform linux -- Python 3.12.3, pytest-8.3.2, pluggy-1.5.0 -- /home/adas/mljar/mljar-supervised/venv/bin/python3
cachedir: .pytest_cache
rootdir: /home/adas/mljar/mljar-supervised
configfile: pytest.ini
plugins: cov-5.0.0
collecting ... collected 1 item
tests/tests_automl/test_targets.py::AutoMLTargetsTest::test_multi_class_abcd_missing_target FAILED
=================================== FAILURES ===================================
____________ AutoMLTargetsTest.test_multi_class_abcd_missing_target ____________
self = <tests.tests_automl.test_targets.AutoMLTargetsTest testMethod=test_multi_class_abcd_missing_target>
def test_multi_class_abcd_missing_target(self):
X = np.random.rand(self.rows * 4, 3)
X = pd.DataFrame(X, columns=[f"f{i}" for i in range(3)])
y = pd.Series(
np.random.permutation(["a", "B", "CC", "d"] * self.rows), name="target"
)
y.iloc[0] = None
y.iloc[1] = None
automl = AutoML(
results_path=self.automl_dir,
total_time_limit=1,
algorithms=["Xgboost"],
train_ensemble=False,
explain_level=0,
start_random_models=1,
)
> automl.fit(X, y)
tests/tests_automl/test_targets.py:262:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
supervised/automl.py:432: in fit
return self._fit(X, y, sample_weight, cv, sensitive_features)
supervised/base_automl.py:967: in _fit
X, y, sample_weight, sensitive_features = self._build_dataframe(
supervised/base_automl.py:789: in _build_dataframe
X, y, sample_weight, sensitive_features = ExcludeRowsMissingTarget.transform(
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
X = f0 f1 f2
0 0.659600 0.507231 0.164356
1 0.748163 0.352224 0.219499
2 0.884379 0....373825 0.768711 0.140064
198 0.265013 0.473400 0.790041
199 0.492648 0.557452 0.144032
[200 rows x 3 columns]
y = 0 None
1 None
2 B
3 a
4 B
...
195 a
196 CC
197 a
198 B
199 a
Name: target, Length: 200, dtype: object
sample_weight = None, sensitive_features = None, warn = True
@staticmethod
def transform(
X=None, y=None, sample_weight=None, sensitive_features=None, warn=False
):
if y is None:
return X, y, sample_weight, sensitive_features
y_missing = pd.isnull(y)
if np.sum(np.array(y_missing)) == 0:
return X, y, sample_weight, sensitive_features
logger.debug("Exclude rows with missing target values")
if warn:
> warnings.warn(
"There are samples with missing target values in the data which will be excluded for further analysis"
)
E UserWarning: There are samples with missing target values in the data which will be excluded for further analysis
supervised/preprocessing/exclude_missing_target.py:25: UserWarning
=========================== short test summary info ============================
FAILED tests/tests_automl/test_targets.py::AutoMLTargetsTest::test_multi_class_abcd_missing_target
============================== 1 failed in 1.94s ===============================
Metadata
Metadata
Assignees
Labels
No labels