-
Notifications
You must be signed in to change notification settings - Fork 425
Closed
Labels
dependenciesPull requests that update a dependency filePull requests that update a dependency file
Milestone
Description
Issue
I have a request regarding the dependencies for mljar-supervised = "0.10.4"
. In particular, my question is whether it would be possible to allow for older versions of numpy
and scipy
(maybe in future releases).
I am currently trying to install mljar-supervised = "0.10.4"
along with tensorflow = "^2.2"
. It seems to me that these two dependencies should definitely be compatible in one application. However, this is not possible due to the following reason: because mljar-supervised (0.10.4) depends on both numpy (>=1.20.0) and scipy (1.6.1), mljar-supervised (0.10.4) is incompatible with tensorflow (>=2.2,<3.0)
Full dependency issue
Because no versions of tensorflow match >2.2,<2.2.1 || >2.2.1,<2.2.2 || >2.2.2,<2.3.0 || >2.3.0,<2.3.1 || >2.3.1,<2.3.2 || >2.3.2,<2.4.0 || >2.4.0,<2.4.1 || >2.4.1,<2.5.0 || >2.5.0,<3.0
and tensorflow (2.2.0) depends on scipy (1.4.1), tensorflow (>=2.2,<2.2.1 || >2.2.1,<2.2.2 || >2.2.2,<2.3.0 || >2.3.0,<2.3.1 || >2.3.1,<2.3.2 || >2.3.2,<2.4.0 || >2.4.0,<2.4.1 || >2.4.1,<2.5.0 || >2.5.0,<3.0) requires scipy (1.4.1).
And because tensorflow (2.2.1) depends on numpy (>=1.16.0,<1.19.0)
and tensorflow (2.2.2) depends on numpy (>=1.16.0,<1.19.0), tensorflow (>=2.2,<2.3.0 || >2.3.0,<2.3.1 || >2.3.1,<2.3.2 || >2.3.2,<2.4.0 || >2.4.0,<2.4.1 || >2.4.1,<2.5.0 || >2.5.0,<3.0) requires scipy (1.4.1) or numpy (>=1.16.0,<1.19.0).
And because tensorflow (2.3.0) depends on scipy (1.4.1)
and tensorflow (2.3.1) depends on numpy (>=1.16.0,<1.19.0), tensorflow (>=2.2,<2.3.2 || >2.3.2,<2.4.0 || >2.4.0,<2.4.1 || >2.4.1,<2.5.0 || >2.5.0,<3.0) requires scipy (1.4.1) or numpy (>=1.16.0,<1.19.0).
And because tensorflow (2.3.2) depends on numpy (>=1.16.0,<1.19.0)
and tensorflow (2.4.0) depends on numpy (>=1.19.2,<1.20.0), tensorflow (>=2.2,<2.4.1 || >2.4.1,<2.5.0 || >2.5.0,<3.0) requires scipy (1.4.1) or numpy (>=1.16.0,<1.19.0 || >=1.19.2,<1.20.0).
And because tensorflow (2.4.1) depends on numpy (>=1.19.2,<1.20.0)
and tensorflow (2.5.0) depends on numpy (>=1.19.2,<1.20.0), tensorflow (>=2.2,<3.0) requires numpy (>=1.16.0,<1.19.0 || >=1.19.2,<1.20.0) or scipy (1.4.1).
And because mljar-supervised (0.10.4) depends on both numpy (>=1.20.0) and scipy (1.6.1), mljar-supervised (0.10.4) is incompatible with tensorflow (>=2.2,<3.0).
So, because property-prediction-challenge depends on both tensorflow (^2.2) and mljar-supervised (0.10.4), version solving failed.
Reproducible example
- Step 1: Install poetry dependency management package with
pip install poetry==1.1.6
- Step 2: Create a new folder and put the following into a new file
pyproject.toml
.
[tool.poetry]
name = "Dependency issues."
version = "0.1.0"
description = "Investigate dependency issues."
authors = ["nobody"]
[tool.poetry.dependencies]
python = "3.8.x"
tensorflow = "^2.2"
mljar-supervised = "0.10.4"
- Step 3: cd into the new folder and run
poetry install
Metadata
Metadata
Assignees
Labels
dependenciesPull requests that update a dependency filePull requests that update a dependency file