-
Notifications
You must be signed in to change notification settings - Fork 425
Description
Currently, r2 metric evaluation is not supported in the tuner/optuna/tuner.py file.
if eval_metric.name not in ["auc", "logloss", "rmse", "mae", "mape"]: raise AutoMLException(f"Metric {eval_metric.name} is not supported")
When I manually add 'r2' to the list, I encounter the following error.
Traceback (most recent call last): File "/usr/local/lib/python3.8/dist-packages/supervised/base_automl.py", line 1054, in _fit trained = self.train_model(params) File "/usr/local/lib/python3.8/dist-packages/supervised/base_automl.py", line 356, in train_model mf.train(results_path, model_subpath) File "/usr/local/lib/python3.8/dist-packages/supervised/model_framework.py", line 185, in train self.learner_params = optuna_tuner.optimize( File "/usr/local/lib/python3.8/dist-packages/supervised/tuner/optuna/tuner.py", line 106, in optimize objective = LightgbmObjective( File "/usr/local/lib/python3.8/dist-packages/supervised/tuner/optuna/lightgbm.py", line 61, in __init__ self.eval_metric_name = metric_name_mapping[ml_task][self.eval_metric.name] KeyError: 'r2'
Is this a known limitation, and if so, is there a way to work around it?