A toolkit for optimizing Earth Observation COG streaming in PyTorch. Achieves 20x throughput and 90% GPU utilization through optimized data loading and compression.
mamba create -n ocog python=3.13.3
conda activate ocog
pip install -r requirements.txt
pip install -e .
Configure dataset paths in the config files:
For Hyperparameter Search (configs/search.yaml
):
sentinel-2:
local: "" # LOCAL DEFAULT PATH
remote: "" # REMOTE DEFAULT URL
files:
- S2A_MSIL2A_20241029T074031_R092_T36MZD_20241029T111159.tif
- S2A_MSIL2A_20241029T074031_R092_T37MBV_20241029T111159.tif
- S2A_MSIL2A_20241228T074331_R092_T36MZE_20241228T110550.tif
- S2B_MSIL2A_20241014T073759_R092_T37MBT_20241014T102258.tif
- S2B_MSIL2A_20241014T073759_R092_T37MBU_20241014T102258.tif
- S2B_MSIL2A_20241017T074829_R135_T36MZC_20241017T100313.tif
- S2B_MSIL2A_20241024T073909_R092_T36MZC_20241024T095754.tif
- S2B_MSIL2A_20241213T074229_R092_T37MCU_20241213T094330.tif
- S2B_MSIL2A_20241216T075239_R135_T36MZD_20241216T094931.tif
- S2B_MSIL2A_20241226T075239_R135_T36MZD_20241226T094735.tif
For Training (configs/train.yaml
):
vaihingen:
local-default: "" # LOCAL DEFAULT PATH
local-optimal: "" # LOCAL OPTIMAL PATH
remote-default: "" # REMOTE DEFAULT URL
remote-optimal: "" # REMOTE OPTIMAL URL
classes: 6
potsdam:
local-default: "" # LOCAL DEFAULT PATH
local-optimal: "" # LOCAL OPTIMAL PATH
remote-default: "" # REMOTE DEFAULT URL
remote-optimal: "" # REMOTE OPTIMAL URL
classes: 6
dfc-22:
local-default: "" # LOCAL DEFAULT PATH
local-optimal: "" # LOCAL OPTIMAL PATH
remote-default: "" # REMOTE DEFAULT URL
remote-optimal: "" # REMOTE OPTIMAL URL
classes: 15
For remote access, create .env
file:
AZURE_SAS=?your_sas_token
The ocogs
command provides a unified interface for all toolkit functionality:
# Show available commands
ocogs --help
# Show version
ocogs --version
# Get help for specific commands
ocogs bayesian_search --help
ocogs grid_search --help
ocogs train --help
Bayesian Search - Find optimal configurations:
# Local optimization
ocogs bayesian_search --trials 50 --local --training-iters 100
# Remote optimization
ocogs bayesian_search --trials 100 --training-iters 200
Grid Search - Compare specific parameters:
ocogs grid_search \
--var1 compression --var2 block_size \
--use_local --training-iters 100
Train segmentation models with optimized data loading:
ocogs train \
--dataset vaihingen \
--max_time 600 \
--gpu 0
python scripts/acquire/sentinel_2.py --output_dir /path/to/sentinel2
Configure the sentinel-2 paths in configs/search.yaml
by filling in the local
and remote
values.
1. Download datasets:
- DFC-22: IEEE Dataport (
labeled_train.zip
) - Vaihingen: Download link (Contact organizers for password)
- Potsdam: Download link (Contact organizers for password)
2. Extract and organize:
# Extract archives
cd /path/to/dataset
scripts/acquire/extract.sh .
# Prepare dataset structure
python scripts/process/prepare_vaihingen.py --path /path/to/vaihingen/raw
python scripts/process/prepare_potsdam.py --path /path/to/potsdam/raw
python scripts/process/prepare_dfc22.py --path /path/to/dfc-22/raw
3. Create optimized versions:
python scripts/process/create_benchmark_datasets.py --raw_path /path/to/dataset/raw
This creates three versions:
default/
: DEFLATE compression, 512x512 tilesoptimal_local/
: No compression for local I/Ooptimal_remote/
: LERC_ZSTD compression for cloud streaming
default:
num_workers: 4 # DataLoader workers
num_threads: 1 # Per-sample threads
prefetch_factor: 2 # Batches to prefetch
sampler_type: random # random|block
patch_size: 256 # Training patch size
local-optimal:
sampler_type: block # Block-aligned sampling
remote-optimal:
num_workers: 64 # More workers for network I/O
prefetch_factor: 8 # Higher prefetch for latency
Each dataset supports four configurations:
local-default
: Local files, standard compressionlocal-optimal
: Local files, optimized for speedremote-default
: Remote files, standard compressionremote-optimal
: Remote files, optimized for streaming
This repository uses the following datasets:
The Data Fusion Contest 2022 (DFC-22) dataset is provided by IEEE GRSS, Université Bretagne-Sud, ONERA, and ESA Φ-lab.
If you use this data, please cite:
- 2022 IEEE GRSS Data Fusion Contest. Online: https://www.grss-ieee.org/technical-committees/image-analysis-and-data-fusion/
- Castillo-Navarro, J., Le Saux, B., Boulch, A. and Lefèvre, S.. Semi-supervised semantic segmentation in Earth Observation: the MiniFrance suite, dataset analysis and multi-task network study. Mach Learn (2021). https://doi.org/10.1007/s10994-020-05943-y
- Hänsch, R.; Persello, C.; Vivone, G.; Castillo Navarro, J.; Boulch, A.; Lefèvre, S.; Le Saux, B. : 2022 IEEE GRSS Data Fusion Contest: Semi-Supervised Learning [Technical Committees], IEEE Geoscience and Remote Sensing Magazine, March 2022
The data are provided for research purposes and must be identified as "grss_dfc_2022" in any scientific publication.
The Vaihingen dataset is part of the ISPRS 2D Semantic Labeling Benchmark. If you use this data, please cite:
- Cramer, M., 2010. The DGPF test on digital aerial camera evaluation – overview and test design. Photogrammetrie – Fernerkundung – Geoinformation 2(2010):73-82.
And include the following acknowledgement: "The Vaihingen data set was provided by the German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF) [Cramer, 2010]: http://www.ifp.uni-stuttgart.de/dgpf/DKEP-Allg.html."
- The data must not be used for other than research purposes. Any other use is prohibited.
- The data must not be distributed to third parties. Any person interested in the data may obtain them via ISPRS WG III/4.
- The German Association of Photogrammetry, Remote Sensing and GeoInformation (DGPF) should be informed about any published papers whose results are based on the Vaihingen test data.
The Potsdam dataset is part of the ISPRS 2D Semantic Labeling Benchmark. If you use this data, please cite:
- ISPRS 2D Semantic Labeling - Potsdam: https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-potsdam.aspx
The dataset consists of 38 patches of true orthophotos (TOP) and digital surface models (DSM) with a ground sampling distance of 5 cm. The data is provided in different channel compositions (IRRG, RGB, RGBIR) as TIFF files.
Based on similar ISPRS test datasets, this data is intended for research purposes only and should not be redistributed. Researchers interested in the data should obtain it directly from the ISPRS benchmark website.
This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.
When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.
This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.
This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.
This project is licensed under the MIT License.