Skip to content

Conversation

justinchuby
Copy link
Collaborator

@justinchuby justinchuby commented Jan 20, 2025

Fix #2023

@justinchuby justinchuby enabled auto-merge (squash) January 20, 2025 15:19
Copy link

codecov bot commented Jan 20, 2025

❌ 53 Tests Failed:

Tests completed Failed Passed Skipped
11815 53 11762 2454
View the top 3 failed tests by shortest run time
onnxscript.backend.onnx_export_test.TestOnnxBackEnd::test_export2python_produces_correct_onnx_script_model_0417_test_gemm_default_zero_bias
Stack Traces | 0.003s run time
onnxscript\backend\onnx_export_test.py:137: in extract_functions
    mod = importlib.import_module(import_name)
C:\hostedtoolcache\windows\Python\3.11.9\x64\Lib\importlib\__init__.py:126: in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
E   ModuleNotFoundError: No module named 'tests.onnx_backend_test_code.test_gemm_default_zero_bias'

The above exception was the direct cause of the following exception:
.nox\test_onnx_weekly\Lib\site-packages\parameterized\parameterized.py:620: in standalone_func
    return func(*(a + p.args), **p.kwargs, **kw)
onnxscript\backend\onnx_export_test.py:271: in test_export2python_produces_correct_onnx_script_model
    functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript\backend\onnx_export_test.py:139: in extract_functions
    raise AssertionError(
E   AssertionError: Unable to import 'tests.onnx_backend_test_code.test_gemm_default_zero_bias' (e=No module named 'tests.onnx_backend_test_code.test_gemm_default_zero_bias') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_gemm_default_zero_bias.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_gemm_default_zero_bias.py', current folder: D:\a\onnxscript\onnxscript
E   ---- CONTENT --
E   import numpy
E   from onnx import TensorProto
E   from onnx.helper import make_tensor
E   from onnxscript import script, external_tensor
E   from onnxscript.values import Opset
E   from onnxscript.onnx_types import FLOAT
E   from onnxscript.onnx_opset import opset13
E   
E   @script()
E   def bck_test_gemm_default_zero_bias(a: FLOAT[3,5], b: FLOAT[5,4], c: FLOAT[1,4]) -> (FLOAT[3,4]):
E       y = opset13.Gemm(a, b, c)
E       return y
onnxscript.backend.onnx_export_test.TestOnnxBackEnd::test_export2python_produces_correct_onnx_script_model_0470_test_hardmax_one_hot
Stack Traces | 0.003s run time
onnxscript\backend\onnx_export_test.py:137: in extract_functions
    mod = importlib.import_module(import_name)
C:\hostedtoolcache\windows\Python\3.11.9\x64\Lib\importlib\__init__.py:126: in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
E   ModuleNotFoundError: No module named 'tests.onnx_backend_test_code.test_hardmax_one_hot'

The above exception was the direct cause of the following exception:
.nox\test_torch_nightly\Lib\site-packages\parameterized\parameterized.py:620: in standalone_func
    return func(*(a + p.args), **p.kwargs, **kw)
onnxscript\backend\onnx_export_test.py:271: in test_export2python_produces_correct_onnx_script_model
    functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript\backend\onnx_export_test.py:139: in extract_functions
    raise AssertionError(
E   AssertionError: Unable to import 'tests.onnx_backend_test_code.test_hardmax_one_hot' (e=No module named 'tests.onnx_backend_test_code.test_hardmax_one_hot') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_hardmax_one_hot.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_hardmax_one_hot.py', current folder: D:\a\onnxscript\onnxscript
E   ---- CONTENT --
E   import numpy
E   from onnx import TensorProto
E   from onnx.helper import make_tensor
E   from onnxscript import script, external_tensor
E   from onnxscript.values import Opset
E   from onnxscript.onnx_types import FLOAT
E   from onnxscript.onnx_opset import opset13
E   
E   @script()
E   def bck_test_hardmax_one_hot(x: FLOAT[1,4]) -> (FLOAT[1,4]):
E       y = opset13.Hardmax(x)
E       return y
onnxscript.backend.onnx_export_test.TestOnnxBackEnd::test_export2python_produces_correct_onnx_script_model_0908_test_reduce_prod_negative_axes_keepdims_example
Stack Traces | 0.003s run time
onnxscript\backend\onnx_export_test.py:137: in extract_functions
    mod = importlib.import_module(import_name)
C:\hostedtoolcache\windows\Python\3.11.9\x64\Lib\importlib\__init__.py:126: in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
E   ModuleNotFoundError: No module named 'tests.onnx_backend_test_code.test_reduce_prod_negative_axes_keepdims_example'

The above exception was the direct cause of the following exception:
.nox\test_onnx_weekly\Lib\site-packages\parameterized\parameterized.py:620: in standalone_func
    return func(*(a + p.args), **p.kwargs, **kw)
onnxscript\backend\onnx_export_test.py:271: in test_export2python_produces_correct_onnx_script_model
    functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript\backend\onnx_export_test.py:139: in extract_functions
    raise AssertionError(
E   AssertionError: Unable to import 'tests.onnx_backend_test_code.test_reduce_prod_negative_axes_keepdims_example' (e=No module named 'tests.onnx_backend_test_code.test_reduce_prod_negative_axes_keepdims_example') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_reduce_prod_negative_axes_keepdims_example.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_reduce_prod_negative_axes_keepdims_example.py', current folder: D:\a\onnxscript\onnxscript
E   ---- CONTENT --
E   import numpy
E   from onnx import TensorProto
E   from onnx.helper import make_tensor
E   from onnxscript import script, external_tensor
E   from onnxscript.values import Opset
E   from onnxscript.onnx_types import FLOAT, INT64
E   from onnxscript.onnx_opset import opset18
E   
E   @script()
E   def bck_test_reduce_prod_negative_axes_keepdims_example(data: FLOAT[3,2,2], axes: INT64[1]) -> (FLOAT[3,1,2]):
E       reduced = opset18.ReduceProd(data, axes, keepdims=1)
E       return reduced

To view more test analytics, go to the Test Analytics Dashboard
📢 Thoughts on this report? Let us know!

@kevalmorabia97
Copy link
Contributor

kevalmorabia97 commented Jan 21, 2025

This repository does use | operator instead of Union or Optional for type annotations quite a lot in most files which is not supported for Python<3.10. Does that mean onnxscript should not be used for Python<3.10?

@justinchuby justinchuby merged commit 7582138 into main Jan 21, 2025
21 of 27 checks passed
@justinchuby justinchuby deleted the justinchuby-patch-1 branch January 21, 2025 16:17
@gramalingam
Copy link
Collaborator

This repository does use | operator instead of Union or Optional for type annotations quite a lot in most files which is not supported for Python<3.10. Does that mean onnxscript should not be used for Python<3.10?

I think the issue is only when it is used with TypeVars? Other uses are fine because of from __future__ import annotations, I think?

@justinchuby
Copy link
Collaborator Author

This is an issue when we want to evaluate the function signature to get the type. This is why I think it maybe better to decorate the function with type information explicitly to avoid having to parse python types and bridge different python versions (#2011)

@justinchuby
Copy link
Collaborator Author

And yes as long as we don't evaluate the annotations, __future__ import annotations turns all annotations into strings so nothing hurts.

kunal-vaishnavi added a commit to microsoft/onnxruntime that referenced this pull request Jan 31, 2025
### Description
This PR adds fusions for [Google's SigLIP
model](https://huggingface.co/google/siglip-base-patch16-224/) and
Microsoft's internal conformer-encoder model.

Here is an example of how to run the ORT transformer optimizer for the
SigLIP model.
```
$ git clone https://github.com/microsoft/onnxruntime
$ cd onnxruntime/onnxruntime/python/tools/transformers
$ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type clip --num_heads 16 --hidden_size 1152 --use_external_data_format --opt_level 0 --disable_shape_inference
```

Here is an example of how to run the ORT transformer optimizer for the
conformer-encoder model.
```
$ git clone https://github.com/microsoft/onnxruntime
$ cd onnxruntime/onnxruntime/python/tools/transformers
$ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type conformer --num_heads 16 --hidden_size 1024 --use_external_data_format --opt_level 0 --disable_shape_inference --convert_attribute
```

### Motivation and Context
This PR helps optimize multi-modal models that use SigLIP for the vision
encoder and conformer-encoder for the speech encoder.

This PR uses changes from the following PRs:
- pytorch/pytorch#144801
- microsoft/onnxscript#2018
- microsoft/onnxscript#2019
- microsoft/onnxscript#2020
- microsoft/onnxscript#2021
- microsoft/onnxscript#2022
- microsoft/onnxscript#2024
- microsoft/onnxscript#2025
- microsoft/onnxscript#2029
- microsoft/onnxscript#2033

### Introduction of ONNX Script

This PR introduces [ONNX
Script](https://github.com/microsoft/onnxscript) into the ORT
transformer optimizer as an optional step via the
`fold_transpose_initializers()` method of the `DynamoOnnxHelper` class.
sfatimar pushed a commit to intel/onnxruntime that referenced this pull request Feb 5, 2025
### Description
This PR adds fusions for [Google's SigLIP
model](https://huggingface.co/google/siglip-base-patch16-224/) and
Microsoft's internal conformer-encoder model.

Here is an example of how to run the ORT transformer optimizer for the
SigLIP model.
```
$ git clone https://github.com/microsoft/onnxruntime
$ cd onnxruntime/onnxruntime/python/tools/transformers
$ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type clip --num_heads 16 --hidden_size 1152 --use_external_data_format --opt_level 0 --disable_shape_inference
```

Here is an example of how to run the ORT transformer optimizer for the
conformer-encoder model.
```
$ git clone https://github.com/microsoft/onnxruntime
$ cd onnxruntime/onnxruntime/python/tools/transformers
$ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type conformer --num_heads 16 --hidden_size 1024 --use_external_data_format --opt_level 0 --disable_shape_inference --convert_attribute
```

### Motivation and Context
This PR helps optimize multi-modal models that use SigLIP for the vision
encoder and conformer-encoder for the speech encoder.

This PR uses changes from the following PRs:
- pytorch/pytorch#144801
- microsoft/onnxscript#2018
- microsoft/onnxscript#2019
- microsoft/onnxscript#2020
- microsoft/onnxscript#2021
- microsoft/onnxscript#2022
- microsoft/onnxscript#2024
- microsoft/onnxscript#2025
- microsoft/onnxscript#2029
- microsoft/onnxscript#2033

### Introduction of ONNX Script

This PR introduces [ONNX
Script](https://github.com/microsoft/onnxscript) into the ORT
transformer optimizer as an optional step via the
`fold_transpose_initializers()` method of the `DynamoOnnxHelper` class.
sfatimar pushed a commit to intel/onnxruntime that referenced this pull request Feb 5, 2025
### Description
This PR adds fusions for [Google's SigLIP
model](https://huggingface.co/google/siglip-base-patch16-224/) and
Microsoft's internal conformer-encoder model.

Here is an example of how to run the ORT transformer optimizer for the
SigLIP model.
```
$ git clone https://github.com/microsoft/onnxruntime
$ cd onnxruntime/onnxruntime/python/tools/transformers
$ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type clip --num_heads 16 --hidden_size 1152 --use_external_data_format --opt_level 0 --disable_shape_inference
```

Here is an example of how to run the ORT transformer optimizer for the
conformer-encoder model.
```
$ git clone https://github.com/microsoft/onnxruntime
$ cd onnxruntime/onnxruntime/python/tools/transformers
$ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type conformer --num_heads 16 --hidden_size 1024 --use_external_data_format --opt_level 0 --disable_shape_inference --convert_attribute
```

### Motivation and Context
This PR helps optimize multi-modal models that use SigLIP for the vision
encoder and conformer-encoder for the speech encoder.

This PR uses changes from the following PRs:
- pytorch/pytorch#144801
- microsoft/onnxscript#2018
- microsoft/onnxscript#2019
- microsoft/onnxscript#2020
- microsoft/onnxscript#2021
- microsoft/onnxscript#2022
- microsoft/onnxscript#2024
- microsoft/onnxscript#2025
- microsoft/onnxscript#2029
- microsoft/onnxscript#2033

### Introduction of ONNX Script

This PR introduces [ONNX
Script](https://github.com/microsoft/onnxscript) into the ORT
transformer optimizer as an optional step via the
`fold_transpose_initializers()` method of the `DynamoOnnxHelper` class.
ashrit-ms pushed a commit to microsoft/onnxruntime that referenced this pull request Feb 11, 2025
### Description
This PR adds fusions for [Google's SigLIP
model](https://huggingface.co/google/siglip-base-patch16-224/) and
Microsoft's internal conformer-encoder model.

Here is an example of how to run the ORT transformer optimizer for the
SigLIP model.
```
$ git clone https://github.com/microsoft/onnxruntime
$ cd onnxruntime/onnxruntime/python/tools/transformers
$ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type clip --num_heads 16 --hidden_size 1152 --use_external_data_format --opt_level 0 --disable_shape_inference
```

Here is an example of how to run the ORT transformer optimizer for the
conformer-encoder model.
```
$ git clone https://github.com/microsoft/onnxruntime
$ cd onnxruntime/onnxruntime/python/tools/transformers
$ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type conformer --num_heads 16 --hidden_size 1024 --use_external_data_format --opt_level 0 --disable_shape_inference --convert_attribute
```

### Motivation and Context
This PR helps optimize multi-modal models that use SigLIP for the vision
encoder and conformer-encoder for the speech encoder.

This PR uses changes from the following PRs:
- pytorch/pytorch#144801
- microsoft/onnxscript#2018
- microsoft/onnxscript#2019
- microsoft/onnxscript#2020
- microsoft/onnxscript#2021
- microsoft/onnxscript#2022
- microsoft/onnxscript#2024
- microsoft/onnxscript#2025
- microsoft/onnxscript#2029
- microsoft/onnxscript#2033

### Introduction of ONNX Script

This PR introduces [ONNX
Script](https://github.com/microsoft/onnxscript) into the ORT
transformer optimizer as an optional step via the
`fold_transpose_initializers()` method of the `DynamoOnnxHelper` class.
guschmue pushed a commit to microsoft/onnxruntime that referenced this pull request Mar 6, 2025
### Description
This PR adds fusions for [Google's SigLIP
model](https://huggingface.co/google/siglip-base-patch16-224/) and
Microsoft's internal conformer-encoder model.

Here is an example of how to run the ORT transformer optimizer for the
SigLIP model.
```
$ git clone https://github.com/microsoft/onnxruntime
$ cd onnxruntime/onnxruntime/python/tools/transformers
$ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type clip --num_heads 16 --hidden_size 1152 --use_external_data_format --opt_level 0 --disable_shape_inference
```

Here is an example of how to run the ORT transformer optimizer for the
conformer-encoder model.
```
$ git clone https://github.com/microsoft/onnxruntime
$ cd onnxruntime/onnxruntime/python/tools/transformers
$ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type conformer --num_heads 16 --hidden_size 1024 --use_external_data_format --opt_level 0 --disable_shape_inference --convert_attribute
```

### Motivation and Context
This PR helps optimize multi-modal models that use SigLIP for the vision
encoder and conformer-encoder for the speech encoder.

This PR uses changes from the following PRs:
- pytorch/pytorch#144801
- microsoft/onnxscript#2018
- microsoft/onnxscript#2019
- microsoft/onnxscript#2020
- microsoft/onnxscript#2021
- microsoft/onnxscript#2022
- microsoft/onnxscript#2024
- microsoft/onnxscript#2025
- microsoft/onnxscript#2029
- microsoft/onnxscript#2033

### Introduction of ONNX Script

This PR introduces [ONNX
Script](https://github.com/microsoft/onnxscript) into the ORT
transformer optimizer as an optional step via the
`fold_transpose_initializers()` method of the `DynamoOnnxHelper` class.
ashrit-ms pushed a commit to microsoft/onnxruntime that referenced this pull request Mar 17, 2025
### Description
This PR adds fusions for [Google's SigLIP
model](https://huggingface.co/google/siglip-base-patch16-224/) and
Microsoft's internal conformer-encoder model.

Here is an example of how to run the ORT transformer optimizer for the
SigLIP model.
```
$ git clone https://github.com/microsoft/onnxruntime
$ cd onnxruntime/onnxruntime/python/tools/transformers
$ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type clip --num_heads 16 --hidden_size 1152 --use_external_data_format --opt_level 0 --disable_shape_inference
```

Here is an example of how to run the ORT transformer optimizer for the
conformer-encoder model.
```
$ git clone https://github.com/microsoft/onnxruntime
$ cd onnxruntime/onnxruntime/python/tools/transformers
$ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type conformer --num_heads 16 --hidden_size 1024 --use_external_data_format --opt_level 0 --disable_shape_inference --convert_attribute
```

### Motivation and Context
This PR helps optimize multi-modal models that use SigLIP for the vision
encoder and conformer-encoder for the speech encoder.

This PR uses changes from the following PRs:
- pytorch/pytorch#144801
- microsoft/onnxscript#2018
- microsoft/onnxscript#2019
- microsoft/onnxscript#2020
- microsoft/onnxscript#2021
- microsoft/onnxscript#2022
- microsoft/onnxscript#2024
- microsoft/onnxscript#2025
- microsoft/onnxscript#2029
- microsoft/onnxscript#2033

### Introduction of ONNX Script

This PR introduces [ONNX
Script](https://github.com/microsoft/onnxscript) into the ORT
transformer optimizer as an optional step via the
`fold_transpose_initializers()` method of the `DynamoOnnxHelper` class.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

Development

Successfully merging this pull request may close these issues.

Python 3.9 - TypeError: unsupported operand type(s) for |: 'TypeVar' and 'NoneType'

4 participants