Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
46 changes: 44 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -255,6 +255,48 @@ Note the following change in the LightGBM4 behavior:

* you need to set `objective=none metric=<eval metric>` parameters to signal that we're going to use custom objective. Otherwise the LightGBM will complain on incorrect objective.

### Low-latency predictions

Raw LGBM API exposes multiple low-level ways to make predictions with lower latency:
* Instead of `predictForMat`, you can use a single-row optimized `predictForMatSingleRow` method
* LGBM my default still uses paralellism for single-row predictions, which still affects final latency. Opt for including `threads=1` parameter for your prediction method calls.
* LightGBM4J also exposes a low-level `predictForMatSingleRowFast` method, which pre-allocates internal structures once, and reuses them on each next call.

#### Single-row prediction

```java
LGBMDataset dataset = LGBMDataset.createFromFile("src/test/resources/cancer.csv", "header=true label=name:Classification", null);
LGBMBooster booster = LGBMBooster.create(dataset, "objective=binary label=name:Classification");
booster.updateOneIter();
booster.updateOneIter();
booster.updateOneIter();
for (int i = 0; i < 10; i++) {
double pred1 = booster.predictForMatSingleRow(new double[]{1, 2, 3, 4, 5, 6, 7, 8, 9}, PredictionType.C_API_PREDICT_NORMAL);
assertTrue(pred1 > 0);
double pred2 = booster.predictForMatSingleRow(new float[]{1, 2, 3, 4, 5, 6, 7, 8, 9}, PredictionType.C_API_PREDICT_NORMAL);
assertTrue(pred2 > 0);
}
dataset.close();
booster.close();
```

#### Single-row fast prediction

```java
LGBMDataset dataset = LGBMDataset.createFromFile("src/test/resources/cancer.csv", "header=true label=name:Classification", null);
LGBMBooster booster = LGBMBooster.create(dataset, "objective=binary label=name:Classification");
booster.updateOneIter();
booster.updateOneIter();
booster.updateOneIter();
LGBMBooster.FastConfig config = booster.predictForMatSingleRowFastInit(PredictionType.C_API_PREDICT_NORMAL, C_API_DTYPE_FLOAT32,9, "");
double pred = booster.predictForMatSingleRowFast(config, new float[]{1, 2, 3, 4, 5, 6, 7, 8, 9}, PredictionType.C_API_PREDICT_NORMAL);
assertTrue(Double.isFinite(pred));
config.close();
dataset.close();
booster.close();

```

## Supported platforms

This code is tested to work well with Linux (Ubuntu 20.04), Windows (Server 2019) and MacOS 10.15/11. Mac M1 is also supported.
Expand All @@ -280,6 +322,8 @@ Supported methods:
* [LGBM_BoosterLoadModelFromString](https://lightgbm.readthedocs.io/en/latest/C-API.html#c.LGBM_BoosterLoadModelFromString)
* [LGBM_BoosterPredictForMat](https://lightgbm.readthedocs.io/en/latest/C-API.html#c.LGBM_BoosterPredictForMat)
* [LGBM_BoosterPredictForMatSingleRow](https://lightgbm.readthedocs.io/en/latest/C-API.html#c.LGBM_BoosterPredictForMatSingleRow)
* [LGBM_BoosterPredictForMatSingleRowFast](https://lightgbm.readthedocs.io/en/latest/C-API.html#c.LGBM_BoosterPredictForMatSingleRowFast)
* [LGBM_BoosterPredictForMatSingleRowFastInit](https://lightgbm.readthedocs.io/en/latest/C-API.html#c.LGBM_BoosterPredictForMatSingleRowFastInit)
* [LGBM_BoosterSaveModel](https://lightgbm.readthedocs.io/en/latest/C-API.html#c.LGBM_BoosterSaveModel)
* [LGBM_BoosterSaveModelToString](https://lightgbm.readthedocs.io/en/latest/C-API.html#c.LGBM_BoosterSaveModelToString)
* [LGBM_BoosterUpdateOneIter](https://lightgbm.readthedocs.io/en/latest/C-API.html#c.LGBM_BoosterUpdateOneIter)
Expand Down Expand Up @@ -314,8 +358,6 @@ Not yet supported:
* [LGBM_BoosterPredictForCSRSingleRowFastInit](https://lightgbm.readthedocs.io/en/latest/C-API.html#c.LGBM_BoosterPredictForCSRSingleRowFastInit)
* [LGBM_BoosterPredictForFile](https://lightgbm.readthedocs.io/en/latest/C-API.html#c.LGBM_BoosterPredictForFile)
* [LGBM_BoosterPredictForMats](https://lightgbm.readthedocs.io/en/latest/C-API.html#c.LGBM_BoosterPredictForMats)
* [LGBM_BoosterPredictForMatSingleRowFast](https://lightgbm.readthedocs.io/en/latest/C-API.html#c.LGBM_BoosterPredictForMatSingleRowFast)
* [LGBM_BoosterPredictForMatSingleRowFastInit](https://lightgbm.readthedocs.io/en/latest/C-API.html#c.LGBM_BoosterPredictForMatSingleRowFastInit)
* [LGBM_BoosterPredictSparseOutput](https://lightgbm.readthedocs.io/en/latest/C-API.html#c.LGBM_BoosterPredictSparseOutput)
* [LGBM_BoosterRefit](https://lightgbm.readthedocs.io/en/latest/C-API.html#c.LGBM_BoosterRefit)
* [LGBM_BoosterResetParameter](https://lightgbm.readthedocs.io/en/latest/C-API.html#c.LGBM_BoosterResetParameter)
Expand Down
112 changes: 111 additions & 1 deletion src/main/java/io/github/metarank/lightgbm4j/LGBMBooster.java
Original file line number Diff line number Diff line change
Expand Up @@ -703,6 +703,117 @@ public double predictForMatSingleRow(float[] data, PredictionType predictionType
}
}

public FastConfig predictForMatSingleRowFastInit(PredictionType predictionType, int dtype, int ncols, String parameter) throws LGBMException {
if (!isClosed) {
SWIGTYPE_p_p_void out = voidpp_handle();

int result = LGBM_BoosterPredictForMatSingleRowFastInit(
voidpp_value(handle),
predictionType.getType(),
0,
iterations,
dtype,
ncols,
parameter,
out
);
if (result < 0) {
delete_voidpp(out);
throw new LGBMException(LGBM_GetLastError());
} else {
return new FastConfig(out);
}
} else {
throw new LGBMException("Booster was already closed");
}
}

public static class FastConfig implements AutoCloseable {
public SWIGTYPE_p_p_void handle;
public FastConfig(SWIGTYPE_p_p_void handle) {
this.handle = handle;
}

@Override
public void close() throws Exception {
delete_voidpp(handle);
}
}
public double predictForMatSingleRowFast(FastConfig config, float[] data, PredictionType predictionType) throws LGBMException {
if (!isClosed) {
SWIGTYPE_p_float dataBuffer = new_floatArray(data.length);
for (int i = 0; i < data.length; i++) {
floatArray_setitem(dataBuffer, i, data[i]);
}
SWIGTYPE_p_long_long outLength = new_int64_tp();
long outBufferSize = outBufferSize(1, data.length, predictionType);
SWIGTYPE_p_double outBuffer = new_doubleArray(outBufferSize);

int result = LGBM_BoosterPredictForMatSingleRowFast(
voidpp_value(config.handle),
float_to_voidp_ptr(dataBuffer),
outLength,
outBuffer
);
if (result < 0) {
delete_floatArray(dataBuffer);
delete_doubleArray(outBuffer);
delete_int64_tp(outLength);
throw new LGBMException(LGBM_GetLastError());
} else {
long length = int64_tp_value(outLength);
double[] values = new double[(int) length];
for (int i = 0; i < length; i++) {
values[i] = doubleArray_getitem(outBuffer, i);
}
delete_floatArray(dataBuffer);
delete_int64_tp(outLength);
delete_doubleArray(outBuffer);
return values[0];
}
} else {
throw new LGBMException("Booster was already closed");
}
}

public double predictForMatSingleRowFast(FastConfig config, double[] data, PredictionType predictionType) throws LGBMException {
if (!isClosed) {
SWIGTYPE_p_double dataBuffer = new_doubleArray(data.length);
for (int i = 0; i < data.length; i++) {
doubleArray_setitem(dataBuffer, i, data[i]);
}
SWIGTYPE_p_long_long outLength = new_int64_tp();
long outBufferSize = outBufferSize(1, data.length, predictionType);
SWIGTYPE_p_double outBuffer = new_doubleArray(outBufferSize);

int result = LGBM_BoosterPredictForMatSingleRowFast(
voidpp_value(config.handle),
double_to_voidp_ptr(dataBuffer),
outLength,
outBuffer
);
if (result < 0) {
delete_doubleArray(dataBuffer);
delete_doubleArray(outBuffer);
delete_int64_tp(outLength);
throw new LGBMException(LGBM_GetLastError());
} else {
long length = int64_tp_value(outLength);
double[] values = new double[(int) length];
for (int i = 0; i < length; i++) {
values[i] = doubleArray_getitem(outBuffer, i);
}
delete_doubleArray(dataBuffer);
delete_int64_tp(outLength);
delete_doubleArray(outBuffer);
return values[0];
}
} else {
throw new LGBMException("Booster was already closed");
}
}


private int importanceType(FeatureImportanceType tpe) {
int importanceType = C_API_FEATURE_IMPORTANCE_GAIN;
switch (tpe) {
Expand Down Expand Up @@ -828,7 +939,6 @@ public boolean updateOneIterCustom(float[] grad, float[] hess) throws LGBMExcept
} else {
throw new LGBMException("Booster was already closed");
}

}


Expand Down
30 changes: 30 additions & 0 deletions src/test/java/io/github/metarank/lightgbm4j/LGBMBoosterTest.java
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@

import java.util.Random;

import static com.microsoft.ml.lightgbm.lightgbmlibConstants.C_API_DTYPE_FLOAT32;
import static com.microsoft.ml.lightgbm.lightgbmlibConstants.C_API_DTYPE_FLOAT64;
import static org.junit.jupiter.api.Assertions.*;

public class LGBMBoosterTest {
Expand Down Expand Up @@ -354,6 +356,34 @@ void testCreateByReference() throws LGBMException {
assertThrows(LGBMException.class, () -> booster.getPredict(0));
}

@Test void testPredictFastFloat() throws LGBMException, Exception {
LGBMDataset dataset = LGBMDataset.createFromFile("src/test/resources/cancer.csv", "header=true label=name:Classification", null);
LGBMBooster booster = LGBMBooster.create(dataset, "objective=binary label=name:Classification");
booster.updateOneIter();
booster.updateOneIter();
booster.updateOneIter();
LGBMBooster.FastConfig config = booster.predictForMatSingleRowFastInit(PredictionType.C_API_PREDICT_NORMAL, C_API_DTYPE_FLOAT32,9, "");
double pred = booster.predictForMatSingleRowFast(config, new float[]{1, 2, 3, 4, 5, 6, 7, 8, 9}, PredictionType.C_API_PREDICT_NORMAL);
assertTrue(Double.isFinite(pred));
config.close();
dataset.close();
booster.close();
}

@Test void testPredictFastDouble() throws LGBMException, Exception {
LGBMDataset dataset = LGBMDataset.createFromFile("src/test/resources/cancer.csv", "header=true label=name:Classification", null);
LGBMBooster booster = LGBMBooster.create(dataset, "objective=binary label=name:Classification");
booster.updateOneIter();
booster.updateOneIter();
booster.updateOneIter();
LGBMBooster.FastConfig config = booster.predictForMatSingleRowFastInit(PredictionType.C_API_PREDICT_NORMAL, C_API_DTYPE_FLOAT64,9, "");
double pred = booster.predictForMatSingleRowFast(config, new double[]{1, 2, 3, 4, 5, 6, 7, 8, 9}, PredictionType.C_API_PREDICT_NORMAL);
assertTrue(Double.isFinite(pred));
config.close();
dataset.close();
booster.close();
}

private float[] randomArray(int size) {
float[] result = new float[size];
Random rnd = new Random();
Expand Down