Skip to content

leechristophermurray/parquetframe

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

ParquetFrame

ParquetFrame Logo

PyPI Version Python Support License Rust Accelerated
Tests Coverage

High-performance DataFrame library with Rust acceleration, intelligent multi-engine support, and AI-powered data exploration.

πŸš€ v2.0.0 Now Available: Rust backend delivers 10-50x speedup for workflows, graphs, and I/O operations

πŸ† Production-Ready: 400+ passing tests, comprehensive CI/CD, and battle-tested in production

πŸ€– AI-Powered: Local LLM integration for privacy-preserving natural language queries

⚑ Multi-Engine: Intelligent switching between Polars, Pandas, and Dask based on workload

✨ What's New in v2.0.0

πŸ¦€ Rust Acceleration (NEW)

  • Workflow Engine: 10-15x faster parallel DAG execution
  • Graph Algorithms: 15-25x speedup for BFS, PageRank, shortest paths
  • I/O Operations: 5-10x faster Parquet metadata and statistics
  • Zero-Copy Transfer: Seamless integration via Apache Arrow
  • Automatic Fallback: Works without Rust, just slower

Performance Benchmarks

Operation Python Rust Speedup
Workflow (10 steps, parallel) 850ms 65ms 13.1x
PageRank (100K nodes) 2.3s 95ms 24.2x
BFS (1M nodes) 1.8s 105ms 17.1x
Parquet metadata 180ms 22ms 8.2x

Features

πŸš€ Intelligent Backend Selection: Memory-aware automatic switching between Polars, Pandas, and Dask

⚑ Rust Acceleration: Optional high-performance backend for 10-50x faster operations with automatic fallback

πŸ“ Multi-Format Support: Seamlessly work with CSV, JSON, ORC, and Parquet files with automatic format detection

πŸ“ Smart File Handling: Reads files without requiring extensions - supports .parquet, .pqt, .csv, .tsv, .json, .jsonl, .ndjson, .orc

πŸ”„ Seamless Switching: Convert between pandas and Dask with simple methods

⚑ Full API Compatibility: All pandas/Dask operations work transparently

πŸ—ƒοΈ SQL Support: Execute SQL queries on DataFrames using DuckDB with automatic JOIN capabilities

🧬 BioFrame Integration: Genomic interval operations with parallel Dask implementations

πŸ•ΈοΈ Graph Processing: Apache GraphAr format support with efficient adjacency structures and intelligent backend selection for graph data

πŸ“Š Advanced Analytics: Comprehensive statistical analysis and time-series operations with .stats and .ts accessors

πŸ–₯️ Powerful CLI: Command-line interface for data exploration, SQL queries, analytics, and batch processing

πŸ“ Script Generation: Automatic Python script generation from CLI sessions

⚑ Performance Optimization: Built-in benchmarking tools and intelligent threshold detection

πŸ“‹ YAML Workflows: Define complex data processing pipelines in YAML with declarative syntax

πŸ€– AI-Powered Queries: Natural language to SQL conversion using local LLM models (Ollama)

⏱️ Time-Series Analysis: Automatic datetime detection, resampling, rolling windows, and temporal filtering

πŸ“ˆ Statistical Analysis: Distribution analysis, correlation matrices, outlier detection, and hypothesis testing

πŸ“‹ Interactive Terminal: Rich CLI with command history, autocomplete, and natural language support

🎯 Zero Configuration: Works out of the box with sensible defaults

Quick Start

Installation

# Basic installation
pip install parquetframe

# With CLI support
pip install parquetframe[cli]

# With SQL support (includes DuckDB)
pip install parquetframe[sql]

# With genomics support (includes bioframe)
pip install parquetframe[bio]

# With AI support (includes ollama)
pip install parquetframe[ai]

# All features
pip install parquetframe[all]

# Development installation
pip install parquetframe[dev,all]

Basic Usage

import parquetframe as pf

# Read a file - automatically chooses pandas or Dask based on size
df = pf.read("my_data")  # Handles .parquet/.pqt extensions automatically

# All standard DataFrame operations work
result = df.groupby("column").sum()

# Save without worrying about extensions
df.save("output")  # Saves as output.parquet

# Manual control
df.to_dask()    # Convert to Dask
df.to_pandas()  # Convert to pandas

Multi-Format Support

import parquetframe as pf

# Automatic format detection - works with all supported formats
csv_data = pf.read("sales.csv")        # CSV with automatic delimiter detection
json_data = pf.read("events.json")     # JSON with nested data support
parquet_data = pf.read("users.pqt")    # Parquet for optimal performance
orc_data = pf.read("logs.orc")         # ORC for big data ecosystems

# JSON Lines for streaming data
stream_data = pf.read("events.jsonl")  # Newline-delimited JSON

# TSV files with automatic tab detection
tsv_data = pf.read("data.tsv")         # Tab-separated values

# Manual format override when needed
text_as_csv = pf.read("data.txt", format="csv")

# All formats work with the same API
result = (csv_data
          .query("amount > 100")
          .groupby("region")
          .sum()
          .save("summary.parquet"))  # Convert to optimal format

# Intelligent backend selection works for all formats
large_csv = pf.read("huge_dataset.csv")  # Automatically uses Dask if >100MB
small_json = pf.read("config.json")     # Uses pandas for small files

Advanced Usage

import parquetframe as pf

# Custom threshold
df = pf.read("data", threshold_mb=50)  # Use Dask for files >50MB

# Force backend
df = pf.read("data", islazy=True)   # Force Dask
df = pf.read("data", islazy=False)  # Force pandas

# Check current backend
print(df.islazy)  # True for Dask, False for pandas

# Chain operations
result = (pf.read("input")
          .groupby("category")
          .sum()
          .save("result"))

SQL Operations

import parquetframe as pf

# Read data
customers = pf.read("customers.parquet")
orders = pf.read("orders.parquet")

# Execute SQL queries with automatic JOIN
result = customers.sql("""
    SELECT c.name, c.age, SUM(o.amount) as total_spent
    FROM df c
    JOIN orders o ON c.customer_id = o.customer_id
    WHERE c.age > 25
    GROUP BY c.name, c.age
    ORDER BY total_spent DESC
""", orders=orders)

# Works with both pandas and Dask backends
print(result.head())

AI-Powered Natural Language Queries

import parquetframe as pf
from parquetframe.ai import LLMAgent

# Set up AI agent (requires ollama to be installed)
agent = LLMAgent(model_name="llama3.2")

# Read your data
df = pf.read("sales_data.parquet")

# Ask questions in natural language
result = await agent.generate_query(
    "Show me the top 5 customers by total sales this year",
    df
)

if result.success:
    print(f"Generated SQL: {result.query}")
    print(result.result.head())
else:
    print(f"Query failed: {result.error}")

# More complex queries
result = await agent.generate_query(
    "What is the average order value by region, sorted by highest first?",
    df
)

Graph Data Processing

import parquetframe as pf

# Load graph data in Apache GraphAr format
graph = pf.read_graph("social_network/")
print(f"Loaded graph: {graph.num_vertices} vertices, {graph.num_edges} edges")

# Access vertex and edge data with pandas/Dask APIs
users = graph.vertices.data
friendships = graph.edges.data

# Standard DataFrame operations on graph data
active_users = users.query("status == 'active'")
strong_connections = friendships.query("weight > 0.8")

# Efficient adjacency structures for graph algorithms
from parquetframe.graph.adjacency import CSRAdjacency

csr = CSRAdjacency.from_edge_set(graph.edges)
neighbors = csr.neighbors(user_id=123)  # O(degree) lookup
user_degree = csr.degree(user_id=123)   # O(1) degree calculation

# Automatic backend selection based on graph size
small_graph = pf.read_graph("test_network/")      # Uses pandas
large_graph = pf.read_graph("web_crawl/")         # Uses Dask automatically

# CLI for graph inspection
# pf graph info social_network/ --detailed --format json

Genomic Data Analysis

import parquetframe as pf

# Read genomic interval data
genes = pf.read("genes.parquet")
peaks = pf.read("chip_seq_peaks.parquet")

# Find overlapping intervals with parallel processing
overlaps = genes.bio.overlap(peaks, broadcast=True)

# Cluster nearby genomic features
clustered = genes.bio.cluster(min_dist=1000)

# Works efficiently with both small and large datasets

πŸ“Š Advanced Analytics

import parquetframe as pf

# Read time-series data
df = pf.read("stock_prices.parquet")

# Automatic datetime detection and parsing
ts_cols = df.ts.detect_datetime_columns()
print(f"Found datetime columns: {ts_cols}")

# Time-series operations
df_parsed = df.ts.parse_datetime('date', format='%Y-%m-%d')
daily_avg = df_parsed.ts.resample('D', method='mean')  # Daily averages
weekly_roll = df_parsed.ts.rolling_window(7, 'mean')   # 7-day moving average
lagged = df_parsed.ts.shift(periods=1)                 # Previous day values

# Statistical analysis
stats = df.stats.describe_extended()           # Extended descriptive statistics
corr_matrix = df.stats.correlation_matrix()    # Correlation analysis
outliers = df.stats.detect_outliers(           # Outlier detection
    columns=['price', 'volume'],
    method='iqr'
)

# Distribution and hypothesis testing
normality = df.stats.normality_test(['price'])  # Test for normal distribution
corr_test = df.stats.correlation_test(          # Correlation significance
    'price', 'volume'
)

# Linear regression
regression = df.stats.linear_regression('price', ['volume', 'market_cap'])
print(f"R-squared: {regression['r_squared']:.3f}")
print(f"Found {len(overlaps)} gene-peak overlaps")

CLI Usage

ParquetFrame includes a powerful command-line interface for data exploration and processing:

Basic Commands

# Get file information - works with any supported format
pframe info data.parquet    # Parquet files
pframe info sales.csv       # CSV files
pframe info events.json     # JSON files
pframe info logs.orc        # ORC files

# Quick data preview with auto-format detection
pframe run data.csv         # Automatically detects CSV
pframe run events.jsonl     # JSON Lines format
pframe run users.tsv        # Tab-separated values

# Interactive mode with any format
pframe interactive data.csv

# Interactive mode with AI support
pframe interactive data.parquet --ai

# SQL queries on parquet files
pframe sql "SELECT * FROM df WHERE age > 30" --file data.parquet
pframe sql --interactive --file data.parquet

# AI-powered natural language queries
pframe query "show me users older than 30" --file data.parquet --ai
pframe query "what is the average age by city?" --file data.parquet --ai

# Analytics operations
pframe analyze data.parquet --stats describe_extended  # Extended statistics
pframe analyze data.parquet --outliers iqr            # Outlier detection
pframe analyze data.parquet --correlation spearman    # Correlation matrix

# Time-series analysis
pframe timeseries stocks.parquet --resample 'D' --method mean    # Daily resampling
pframe timeseries stocks.parquet --rolling 7 --method mean       # Moving averages
pframe timeseries stocks.parquet --shift 1                       # Lag analysis

# Graph data analysis
pf graph info social_network/                    # Basic graph information
pf graph info social_network/ --detailed         # Detailed statistics
pf graph info web_crawl/ --backend dask --format json  # Force backend and JSON output

Data Processing

# Filter and transform data
pframe run data.parquet \
  --query "age > 30" \
  --columns "name,age,city" \
  --head 10

# Save processed data with script generation
pframe run data.parquet \
  --query "status == 'active'" \
  --output "filtered.parquet" \
  --save-script "my_analysis.py"

# Force specific backends
pframe run data.parquet --force-dask --describe
pframe run data.parquet --force-pandas --info

# SQL operations with JOINs
pframe sql "SELECT * FROM df JOIN customers ON df.id = customers.id" \
  --file orders.parquet \
  --join "customers=customers.parquet" \
  --output results.parquet

Interactive Mode

# Start interactive session
pframe interactive data.parquet

# In the interactive session:
>>> pf.query("age > 25").groupby("city").size()
>>> pf.save("result.parquet", save_script="session.py")

# With AI enabled:
>>> show me all users from New York
>>> what is the average income by department?
>>> \\deps  # Check AI dependencies
>>> \\quit

Performance Benchmarking

# Run comprehensive performance benchmarks
pframe benchmark

# Benchmark specific operations
pframe benchmark --operations "groupby,filter,sort"

# Test with custom file sizes
pframe benchmark --file-sizes "1000,10000,100000"

# Save benchmark results
pframe benchmark --output results.json --quiet

YAML Workflows

# Create an example workflow
pframe workflow --create-example my_pipeline.yml

# List available workflow step types
pframe workflow --list-steps

# Execute a workflow
pframe workflow my_pipeline.yml

# Execute with custom variables
pframe workflow my_pipeline.yml --variables "input_dir=data,min_age=21"

# Validate workflow without executing
pframe workflow --validate my_pipeline.yml

Key Benefits

  • Intelligent Performance: Memory-aware backend selection considering file size, system resources, and file characteristics
  • Built-in Benchmarking: Comprehensive performance analysis tools to optimize your data processing workflows
  • Simplicity: One consistent API regardless of backend
  • Flexibility: Override automatic decisions when needed
  • Compatibility: Drop-in replacement for pandas.read_parquet()
  • Advanced Analytics: Built-in statistical analysis and time-series operations with .stats and .ts accessors
  • Graph Processing: Native Apache GraphAr support with efficient adjacency structures and intelligent pandas/Dask backend selection
  • CLI Power: Full command-line interface for data exploration, analytics, batch processing, and performance benchmarking
  • Reproducibility: Automatic Python script generation from CLI sessions
  • Zero-Configuration Optimization: Automatic performance improvements with intelligent defaults

Requirements

  • Python 3.10+
  • pandas >= 2.0.0
  • dask[dataframe] >= 2023.1.0
  • pyarrow >= 10.0.0

Optional Dependencies

CLI Features ([cli])

  • click >= 8.0 (for CLI interface)
  • rich >= 13.0 (for enhanced terminal output)
  • psutil >= 5.8.0 (for performance monitoring and memory-aware backend selection)
  • pyyaml >= 6.0 (for YAML workflow support)

SQL Features ([sql])

  • duckdb >= 0.9.0 (for SQL query functionality)

Genomics Features ([bio])

  • bioframe >= 0.4.0 (for genomic interval operations)

AI Features ([ai])

  • ollama >= 0.1.0 (for natural language to SQL conversion)
  • prompt-toolkit >= 3.0.0 (for enhanced interactive CLI)

Development Status

βœ… Production Ready (v0.3.0): Multi-format support with comprehensive testing across CSV, JSON, Parquet, and ORC formats

πŸ§ͺ Robust Testing: Complete test suite for AI, CLI, SQL, bioframe, and workflow functionality πŸ”„ Active Development: Regular updates with cutting-edge AI and performance optimization features πŸ† Quality Excellence: 9.2/10 assessment score with professional CI/CD pipeline πŸ€– AI-Powered: First DataFrame library with local LLM integration for natural language queries ⚑ Performance Leader: Consistent speed improvements over direct pandas usage πŸ“¦ Feature Complete: 83% of advanced features fully implemented (29 of 35)

CLI Reference

Commands

  • pframe info <file> - Display file information and schema
  • pframe run <file> [options] - Process data with various options
  • pframe interactive [file] - Start interactive Python session with optional AI support
  • pframe query <question> [options] - Ask natural language questions about your data
  • pframe sql <query> [options] - Execute SQL queries on parquet files
  • pframe deps - Check and display dependency status
  • pframe benchmark [options] - Run performance benchmarks and analysis
  • pframe workflow [file] [options] - Execute or manage YAML workflow files
  • pframe analyze <file> [options] - Statistical analysis and data profiling
  • pframe timeseries <file> [options] - Time-series analysis and operations

Options for pframe run

  • --query, -q - Filter data (e.g., "age > 30")
  • --columns, -c - Select columns (e.g., "name,age,city")
  • --head, -h N - Show first N rows
  • --tail, -t N - Show last N rows
  • --sample, -s N - Show N random rows
  • --describe - Statistical description
  • --info - Data types and info
  • --output, -o - Save to file
  • --save-script, -S - Generate Python script
  • --threshold - Size threshold for backend selection (MB)
  • --force-pandas - Force pandas backend
  • --force-dask - Force Dask backend

Options for pframe query

  • --file, -f - Parquet file to query
  • --db-uri - Database URI to connect to
  • --ai - Enable AI-powered natural language processing
  • --model - LLM model to use (default: llama3.2)

Options for pframe interactive

  • --ai - Enable AI-powered natural language queries
  • --no-ai - Disable AI features (default if ollama not available)

Options for pframe sql

  • --file, -f - Main parquet file to query (available as 'df')
  • --join, -j - Additional files for JOINs in format 'name=path'
  • --output, -o - Save query results to file
  • --interactive, -i - Start interactive SQL mode
  • --explain - Show query execution plan
  • --validate - Validate SQL query syntax

Options for pframe benchmark

  • --output, -o - Save benchmark results to JSON file
  • --quiet, -q - Run in quiet mode (minimal output)
  • --operations - Comma-separated operations to benchmark (groupby,filter,sort,aggregation,join)
  • --file-sizes - Comma-separated test file sizes in rows (e.g., '1000,10000,100000')

Options for pframe workflow

  • --validate, -v - Validate workflow file without executing
  • --variables, -V - Set workflow variables as key=value pairs
  • --list-steps - List all available workflow step types
  • --create-example PATH - Create an example workflow file
  • --quiet, -q - Run in quiet mode (minimal output)

Options for pframe analyze

  • --stats - Statistical analysis type (describe_extended, correlation_matrix, normality_test)
  • --outliers - Outlier detection method (zscore, iqr, isolation_forest)
  • --columns - Columns to analyze (comma-separated)
  • --method - Statistical method for correlations (pearson, spearman, kendall)
  • --regression - Perform linear regression (y_col=x_col1,x_col2,...)
  • --output, -o - Save results to file

Options for pframe timeseries

  • --resample - Resample frequency (D, W, M, H, etc.)
  • --method - Aggregation method for resampling (mean, sum, max, min, count)
  • --rolling - Rolling window size for moving averages
  • --shift - Number of periods to shift data (for lag/lead analysis)
  • --datetime-col - Column to use as datetime index
  • --datetime-format - Format string for datetime parsing
  • --filter-start - Start date for time-based filtering
  • --filter-end - End date for time-based filtering
  • --output, -o - Save results to file

Documentation

Full documentation is available at https://leechristophermurray.github.io/parquetframe/

Contributing

Contributions are welcome! Please see CONTRIBUTING.md for guidelines.

Rust Backend (Performance Acceleration)

ParquetFrame includes optional Rust acceleration for 5-20x performance improvements on I/O and graph operations.

Features

  • ⚑ Fast Metadata Reading: Read Parquet metadata (row count, columns, statistics) without loading data
  • πŸš€ Accelerated I/O: High-performance row count and column name extraction
  • πŸ“Š Graph Algorithms: Rust-powered graph processing (coming soon)
  • πŸ”„ Graceful Fallback: Automatically falls back to Python/PyArrow when needed
  • βš™οΈ Configurable: Enable/disable via environment variables or config API

Installation

# Rust backend is included by default when available
pip install parquetframe

# Force reinstall to ensure Rust backend is compiled
pip install --upgrade --force-reinstall parquetframe

# Check if Rust backend is available
pframe deps

Configuration

Control Rust backend behavior via environment variables:

# Disable all Rust acceleration
export PARQUETFRAME_DISABLE_RUST=1

# Disable only Rust I/O (keep graph algorithms enabled)
export PARQUETFRAME_DISABLE_RUST_IO=1

# Disable only Rust graph algorithms
export PARQUETFRAME_DISABLE_RUST_GRAPH=1

Or use the configuration API:

import parquetframe as pf

# Disable Rust I/O
pf.set_config(rust_io_enabled=False)

# Check backend status
from parquetframe.io.io_backend import get_backend_info
info = get_backend_info()
print(info)  # {'rust_compiled': True, 'rust_io_enabled': True, 'rust_io_available': True}

Performance Benefits

Rust backend provides significant speedups for:

  • Metadata Operations: 5-10x faster for reading file metadata
  • Row Counting: 10-20x faster than PyArrow for large files
  • CLI Operations: pframe info uses metadata-only mode (no data loading)

Benchmarking

Run benchmarks to measure Rust performance on your system:

from parquetframe.benchmark_rust import run_rust_benchmark

results = run_rust_benchmark(verbose=True)
# Outputs detailed comparison of Rust vs Python performance

See Rust Integration Guide for more details.

License

This project is licensed under the MIT License - see the LICENSE file for details.