Skip to content

larakim/Mlflowtest

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Mlflowtest

Test mlflow dagshub

dagshub dagshub

MLFLOW_TRACKING_URI=https://dagshub.com/larakim/Mlflowtest.mlflow MLFLOW_TRACKING_USERNAME=larakim MLFLOW_TRACKING_PASSWORD=6f0caff147881a6dd8d7169da2dc21273f023c6c python script.py

Run this to export as env variables:

set MLFLOW_TRACKING_URI=https://dagshub.com/larakim/Mlflowtest.mlflow

set MLFLOW_TRACKING_USERNAME=larakim 

set MLFLOW_TRACKING_PASSWORD=6f0caff147881a6dd8d7169da2dc21273f023c6c 

AWS

Mlflow on AWS setup:

  1. Login to AWS console
  2. Create IAM user with AdminAccess
  3. Export the credentials in your AWS CLI by running "aws configure"
  4. Create a s3 bucket
  5. Create EC2 machine (Ubuntu) & add security groups 5000 port

Run the following command on EC2 machine

sudo apt update
sudo apt install python3-pip
sudo pip3 install pipenv
sudo pip3 install virtualenv
mkdir mlflow
cd mlflow
pipenv install mlflow
pipenv install awscli
pipenv install boto3
pipenv shell

#Then set aws credentials
aws configure
#Finally
mlflow server -h 0.0.0.0 --default-artifact-root s3://mlflow-test-23
# open public IPv4 DNS to the port 5000

# set uri in your local terminal and in your code
set MLFLOW_TRACKING_URI=http://ec2-54-147-36-34.compute-1.amazonaws.com:5000/

About

Test mlflow dagshub

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages