Skip to content
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -282,6 +282,7 @@ Over 50 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM
| Qwen2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen2) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2) |
| Qwen2.5 | | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2.5) |
| Qwen-VL | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl) | [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen-vl) |
| Qwen2-VL || [link](python/llm/example/GPU/PyTorch-Models/Model/qwen2-vl) |
| Qwen2-Audio | | [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen2-audio) |
| Aquila | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila) | [link](python/llm/example/GPU/HuggingFace/LLM/aquila) |
| Aquila2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila2) | [link](python/llm/example/GPU/HuggingFace/LLM/aquila2) |
Expand Down
1 change: 1 addition & 0 deletions README.zh-CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -282,6 +282,7 @@ See the demo of running [*Text-Generation-WebUI*](https://ipex-llm.readthedocs.i
| Qwen2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen2) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2) |
| Qwen2.5 | | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2.5) |
| Qwen-VL | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl) | [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen-vl) |
| Qwen2-VL || [link](python/llm/example/GPU/PyTorch-Models/Model/qwen2-vl) |
| Aquila | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila) | [link](python/llm/example/GPU/HuggingFace/LLM/aquila) |
| Aquila2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila2) | [link](python/llm/example/GPU/HuggingFace/LLM/aquila2) |
| MOSS | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/moss) | |
Expand Down
133 changes: 133 additions & 0 deletions python/llm/example/GPU/PyTorch-Models/Model/qwen2-vl/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,133 @@
# Qwen2-VL
In this directory, you will find examples on how you could use IPEX-LLM `optimize_model` API to accelerate Qwen2 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) as a reference Qwen2-VL model.

## 0. Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.

## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a Qwen2-VL model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
### 1. Install
#### 1.1 Installation on Linux
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

pip install transformers==4.45.0 # install transformers which supports Qwen2-VL
pip install qwen_vl_utils
```

#### 1.2 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11 libuv
conda activate llm

# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

pip install transformers==4.45.0 # install transformers which supports Qwen2-VL
pip install qwen_vl_utils
```

### 2. Configures OneAPI environment variables for Linux

> [!NOTE]
> Skip this step if you are running on Windows.

This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.

```bash
source /opt/intel/oneapi/setvars.sh
```

### 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
<details>

<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>

```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
```

</details>

<details>

<summary>For Intel Data Center GPU Max Series</summary>

```bash
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1
```
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
</details>

<details>

<summary>For Intel iGPU</summary>

```bash
export SYCL_CACHE_PERSISTENT=1
export BIGDL_LLM_XMX_DISABLED=1
```

</details>

#### 3.2 Configurations for Windows
<details>

<summary>For Intel iGPU</summary>

```cmd
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
```

</details>

<details>

<summary>For Intel Arc™ A-Series Graphics</summary>

```cmd
set SYCL_CACHE_PERSISTENT=1
```

</details>

> [!NOTE]
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples

```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Qwen2-VL model (e.g. `Qwen/Qwen2-VL-7B-Instruct`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'Qwen/Qwen2-VL-7B-Instruct'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.

#### Sample Output
##### [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct)
```log
Inference time: xxxx s
-------------------- Input Image --------------------
https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg
-------------------- Prompt --------------------
Describe this image.
-------------------- Output --------------------
The image depicts depicts a woman and a dog sitting in shallow water on a beach. The
```
The sample input image is (which is fetched from [Qwen2-VL quickstart](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct#quickstart)):

<a href='https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg'><img width=400px src='https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg' ></a>
115 changes: 115 additions & 0 deletions python/llm/example/GPU/PyTorch-Models/Model/qwen2-vl/generate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import torch
import time
import argparse

from transformers import AutoTokenizer
from ipex_llm import optimize_model
import numpy as np


if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using generate() API for Qwen2-VL-7B-Instruct model')
parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen2-VL-7B-Instruct",
help='The huggingface repo id for the Qwen2-VL model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="Describe this image.",
help='Prompt to infer')
parser.add_argument('--image-url-or-path', type=str,
default='https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg' ,
help='The URL or path to the image to infer')

parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')

args = parser.parse_args()
model_path = args.repo_id_or_model_path


from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
from ipex_llm import optimize_model
model = Qwen2VLForConditionalGeneration.from_pretrained(model_path,
trust_remote_code=True,
torch_dtype = 'auto',
low_cpu_mem_usage=True,
use_cache=True)
model = optimize_model(model, low_bit='sym_int4')
model = model.float().to("xpu")

# The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
min_pixels = 256*28*28
max_pixels = 1280*28*28
processor = AutoProcessor.from_pretrained(model_path, min_pixels=min_pixels, max_pixels=max_pixels)

prompt = args.prompt
image_path = args.image_url_or_path

# The following code for generation is adapted from https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct#quickstart
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": image_path,
},
{"type": "text", "text": prompt},
],
}
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to('xpu')

with torch.inference_mode():
# warmup
generated_ids = model.generate(
**inputs,
max_new_tokens=args.n_predict
)

st = time.time()
generated_ids = model.generate(
**inputs,
max_new_tokens=args.n_predict
)
torch.xpu.synchronize()
end = time.time()
generated_ids = generated_ids.cpu()
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, generated_ids)
]

response = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(f'Inference time: {end-st} s')
print('-'*20, 'Input Image', '-'*20)
print(image_path)
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(response)