Skip to content

🎞️ GSPO #3775

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 12 commits into from
Jul 27, 2025
Merged

🎞️ GSPO #3775

merged 12 commits into from
Jul 27, 2025

Conversation

qgallouedec
Copy link
Member

What does this PR do?

Fixes # (issue)

Before submitting

  • This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
  • Did you read the contributor guideline,
    Pull Request section?
  • Was this discussed/approved via a GitHub issue? Please add a link
    to it if that's the case.
  • Did you make sure to update the documentation with your changes?
  • Did you write any new necessary tests?

Who can review?

Anyone in the community is free to review the PR once the tests have passed. Feel free to tag
members/contributors who may be interested in your PR.

@qgallouedec qgallouedec marked this pull request as ready for review July 26, 2025 05:07
@HuggingFaceDocBuilderDev

The docs for this PR live here. All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.

@qgallouedec qgallouedec changed the title GSPO 🎞️ GSPO Jul 26, 2025
@qgallouedec qgallouedec merged commit 0303431 into main Jul 27, 2025
11 checks passed
@qgallouedec qgallouedec deleted the gspo branch July 27, 2025 12:14
@SabaPivot
Copy link

YOU ARE FAST

shirinyamani pushed a commit that referenced this pull request Jul 28, 2025
marcandrelarochelle pushed a commit to marcandrelarochelle/trl that referenced this pull request Jul 29, 2025
erictang000 pushed a commit to NovaSky-AI/SkyRL that referenced this pull request Aug 5, 2025
This PR adds support for [Group Sequence Policy Optimization
(GSPO)](https://arxiv.org/abs/2507.18071), the hotness du jour from
Alibaba Qwen. The implementation in this PR is loosely based on [this
one](huggingface/trl#3775) from TRL. It adds an
`importance_sampling_level` config option which can be `token`
(PPO/GRPO) or `sequence` (GSPO).

I ran a short/small GSM8k run with Qwen2.5-0.5B and the loss curves look
okay:
<img width="314" height="240" alt="image"
src="https://github.com/user-attachments/assets/f52d7c64-416c-4419-aa96-4a03c9048007"
/>

However, I had to hack a few things to get this to run on Datadog's
cloud infra (including changing some dependency versions) so I'd
encourage one of the maintainers to reproduce these results locally
before merging.
vinid added a commit to vinid/SkyRL that referenced this pull request Aug 11, 2025
* [Trainer] Support per-token rewards in trainer (NovaSky-AI#109)

* Add check for whether p2p access is supported - allows code to run on L4/L40S after NovaSky-AI#73 upgrade to cuda 12.8 (NovaSky-AI#108)

# Overview
After NovaSky-AI#73, the main code path no longer runs on GPUs without P2P support
(potentially due to cuda 12.8 upgrade?) - an error would be thrown like

```bash
torch.distributed.DistBackendError: NCCL error in: /pytorch/torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:3353, unhandled cuda error (run with NCCL_DEBUG=INFO for details), NCCL version 2.26.2
ncclUnhandledCudaError: Call to CUDA function failed.
Last error:
Cuda failure 217 'peer access is not supported between these two devices'
```

This PR adds a check for whether peer access is supported (using
torch/cuda) between all GPUs on a node to the ray initialization, and
sets relevant NCCL env vars to allow the code to run on these machine
types.

```python
if not peer_access_supported():
        logger.info("Peer access is not supported, disabling P2P and SHM")
        env_vars["NCCL_P2P_DISABLE"] = "1"
        env_vars["NCCL_SHM_DISABLE"] = "1"
```

Example running on L40S:
<img width="1854" height="227" alt="image"
src="https://github.com/user-attachments/assets/1cca46b5-6e16-4ae7-9a33-df52d138bdeb"
/>

* [dependencies] Upgrade ray to 2.48.0 (NovaSky-AI#106)

# What does this PR do
Upgrades ray to 2.48.0, which allows us to remove the pip install vllm
in the Dockerfile as a fallback for when uv + vllm does not resolve
dependencies with the vllm + ray backend correctly.

We leave the previous Dockerfile in `docker/Dockerfile.ray244` for
backwards compatibility

---------

Co-authored-by: Sumanth R Hegde <[email protected]>

* fix issue with NovaSky-AI#108 that broke gpu ci (NovaSky-AI#112)

missed an argument in `gpu_ci/conftest.py` for `peer_access_supported()`
- fix for gpu ci to run

Passing now with update:
<img width="1811" height="861" alt="image"
src="https://github.com/user-attachments/assets/70011c54-1e33-44b5-83a0-616029f891d2"
/>


And main runs (and disables p2p access) correctly:
<img width="2067" height="203" alt="image"
src="https://github.com/user-attachments/assets/399aff67-cc51-4588-a632-47698073593c"
/>

* Add warning for certain uv versions due to `uv run --with` regression (NovaSky-AI#113)

# What does this PR do?

Adds a warning for uv versions 0.8.0, 0.8.1 and 0.8.2 due to a bug in
the uv run --with flag for "Running in ray cluster" section. These are
relatively new versions and thus it's better to have this detail in the
documentation for users.


<img width="692" height="458" alt="Screenshot 2025-07-25 at 6 09 15β€―PM"
src="https://github.com/user-attachments/assets/f1997eac-2867-4552-8ef7-eea8741e32b6"
/>
<img width="779" height="568" alt="Screenshot 2025-07-25 at 6 09 19β€―PM"
src="https://github.com/user-attachments/assets/5080d328-c934-4864-91a8-932902dea934"
/>

---------

Signed-off-by: SumanthRH <[email protected]>

* [GPU CI] Only trigger workflow for relevant changes in `skyrl-train` (NovaSky-AI#114)

* [bug] Loading saved HF weights errors (NovaSky-AI#118)

Addresses NovaSky-AI#97

* [DAPO] Add support for overlong filtering (NovaSky-AI#111)

## What does this PR do? 

Adds `apply_overlong_filtering` to the generator config, and provides a
generator utility method `apply_overlong_filtering()` for
post-processing the loss mask.

I originally implemented this using the `stop_reasons` to determine
whether the sequence was truncated, but instead switched to looking for
`eos_token` in the response IDs for a more general approach.

## Tests
Added CPU tests for the utility method and for SkyRL Gym Generator's use
of the utility method.

* [skyrl-gym] GSM8k - LLM Judge example (NovaSky-AI#74)

* Fix MLFlow logging (NovaSky-AI#121)

This is a small change to make the MLFlow integration work. Currently
this fails with a Pandas error when trying to flatten an Omega dict; we
need to convert to a regular Python dictionary.

Can confirm this works on our MLFlow setup:
<img width="1406" height="683" alt="image"
src="https://github.com/user-attachments/assets/fcee526a-815e-4f08-bf25-d2709779ced7"
/>

* [Trainer] Support registering custom advantage estimators (NovaSky-AI#115)

## What does this PR do? 

Adds an `AdvantageEstimatorRegistry` to support custom advantage
estimation methods without modifying the skyrl-train package.

Added `examples/algorithm/custom_advantage_estimator` folder to give
quick example of how to register a custom adv est function.

## Tests
Adding cpu test to ensure registration works.

* [checkpointing] Add HF model config and tokenizer config to checkpoint folder  (NovaSky-AI#124)

# Overview
Adds the HF model config and tokenizer config to `ckpt_path/huggingface`
for deepspeed and fsdp. So now the checkpoint directory will be:

```
{ckpt_path}/
β”œβ”€β”€ latest_ckpt_global_step.txt           # Holds the global step of the latest checkpoint
β”œβ”€β”€ global_step_10/                       # Checkpoint at training step 10
β”‚   β”œβ”€β”€ policy/                          # Policy model checkpoint directory
β”‚   β”‚   β”œβ”€β”€ fsdp_config.json      # stores fsdp version and world size
β”‚   β”‚   β”œβ”€β”€ huggingface/
β”‚   β”‚       β”œβ”€β”€ config.json                 # model config
β”‚   β”‚       β”œβ”€β”€ tokenizer_config.json       # tokenizer config
β”‚   β”‚       β”œβ”€β”€ generation_config.json      # generation config
β”‚   β”‚       β”œβ”€β”€ ...                         # other tokenizer config files
β”‚   β”‚   β”œβ”€β”€ model_state.pt               # Model parameters
β”‚   β”‚   β”œβ”€β”€ optimizer_state.pt           # Optimizer state
β”‚   β”‚   └── lr_scheduler_state.pt        # Learning rate scheduler state
```

For deepspeed it will be similar but without `fsdp_config.json`

```
{ckpt_path}/
β”œβ”€β”€ latest_ckpt_global_step.txt           # Holds the global step of the latest checkpoint
β”œβ”€β”€ global_step_10/                       # Checkpoint at training step 10
β”‚   β”œβ”€β”€ policy/                          # Policy model checkpoint directory
β”‚   β”‚   β”œβ”€β”€ huggingface/
β”‚   β”‚       β”œβ”€β”€ config.json                 # model config
β”‚   β”‚       β”œβ”€β”€ tokenizer_config.json       # tokenizer config
β”‚   β”‚       β”œβ”€β”€ generation_config.json      # generation config
β”‚   β”‚       β”œβ”€β”€ ...                         # other tokenizer config files
β”‚   β”‚   β”œβ”€β”€ ...               # deepspeed checkpointing files
```

* Fix discord link (NovaSky-AI#125)

* Fix broken link (NovaSky-AI#128)

* [Trainer/Algorithm] Support registering custom policy loss functions + refactor adv estimator registry to allow registration outside ray workers (NovaSky-AI#126)

# Overview
- Adds support for registering custom policy loss functions, similar to
NovaSky-AI#115,
- Refactors the policy loss to be a function in `ppo_utils.py` instead
of a (`nn.Module` in `worker.py`)
- Introduces a breaking change in renaming
`trainer.algorithm.ppo_loss_type` to
`trainer.algorithm.policy_loss_type`
- Addresses Issue NovaSky-AI#116 by creating a new `BaseFunctionRegistry` class
that uses a [named
actor](https://docs.ray.io/en/latest/ray-core/actors/named-actors.html)
to support the following pattern:

```python
# Example of custom policy loss: "simple_baseline"
def compute_simple_baseline_policy_loss(
    log_probs: torch.Tensor,
    ...
):
    return torch.randn(1, device=log_probs.device), 0.0

# Register the custom policy loss - outside of the ray worker
PolicyLossRegistry.register("simple_baseline", compute_simple_baseline_policy_loss)


@ray.remote(num_cpus=1)
def skyrl_entrypoint(cfg: DictConfig):
    exp = BasePPOExp(cfg)
    exp.run()


@hydra.main(config_path=config_dir, config_name="ppo_base_config", version_base=None)
def main(cfg: DictConfig) -> None:
    # validate the arguments
    validate_cfg(cfg)

    initialize_ray(cfg)

    ray.get(skyrl_entrypoint.remote(cfg))
```
this change was necessary for `PolicyLossRegistry` to be accessible,
since the worker `actor_loss_fn` attribute is set in `init_model` within
the `worker` actor, which is a ray actor created from within the
skyrl_entrypoint ray task (and registering within the entrypoint
wouldn't propagate down another layer).
- updates AdvantageEstimatorRegistry to extend the same
`BaseFunctionRegistry` class


Example runs:
Custom advantage (mean of reward)
<img width="956" height="326" alt="image"
src="https://github.com/user-attachments/assets/1b7222bc-fbb9-49b1-876d-265b71201087"
/>

Custom policy loss (reinforce - just (-logprobs * advantages).mean())
<img width="939" height="330" alt="image"
src="https://github.com/user-attachments/assets/cbed7ef5-b3e7-4e32-beba-b52b80879f47"
/>

* [SkyAgent] Upload initial refactored code (NovaSky-AI#131)

# What does this PR do?

Uploading our initial refactored code for SkyAgent

---------

Signed-off-by: SumanthRH <[email protected]>
Co-authored-by: Shiyi Cao <[email protected]>
Co-authored-by: Dacheng Li <[email protected]>

* [trainer] add more robust generation output validation (NovaSky-AI#132)

# Overview
Adds a `validate_generation_output` function in `trainer_utils.py` with
more robust validation of generation output format. Specifically, given
```
class GeneratorOutput(TypedDict):
    prompt_token_ids: List[List[int]]
    response_ids: List[List[int]]
    rewards: Union[List[float], List[List[float]]]
    loss_masks: List[List[int]]
    stop_reasons: Optional[List[str]]
    rollout_metrics: Optional[Dict[str, Any]]
```

We expect
- all list attributes should have the same length and be the same length
as the input batch of prompts at dim=0
- non zero length lists
- response_ids, loss masks, and rewards (if token level rewards) should
be the same length
- the sum of loss masks should be non-zero (logging a warning if it is
not)

verified gsm8k run still works:
<img width="563" height="330" alt="image"
src="https://github.com/user-attachments/assets/eeefebcb-d5fc-486d-b906-f4344b1e2779"
/>

---------

Co-authored-by: Sumanth R Hegde <[email protected]>

* [Trainer] GSPO support (NovaSky-AI#120)

This PR adds support for [Group Sequence Policy Optimization
(GSPO)](https://arxiv.org/abs/2507.18071), the hotness du jour from
Alibaba Qwen. The implementation in this PR is loosely based on [this
one](huggingface/trl#3775) from TRL. It adds an
`importance_sampling_level` config option which can be `token`
(PPO/GRPO) or `sequence` (GSPO).

I ran a short/small GSM8k run with Qwen2.5-0.5B and the loss curves look
okay:
<img width="314" height="240" alt="image"
src="https://github.com/user-attachments/assets/f52d7c64-416c-4419-aa96-4a03c9048007"
/>

However, I had to hack a few things to get this to run on Datadog's
cloud infra (including changing some dependency versions) so I'd
encourage one of the maintainers to reproduce these results locally
before merging.

* [SkyAgent] Add initial docs (NovaSky-AI#134)

# What does this PR do?

Adds initial documentation for SkyAgent. 

We are still actively cleaning this package up, but I thought initial
documentation will be helpful for anyone who stumbles across this.


The documentation folder is still in `skyrl-train`, and much of the docs
also refer to "SkyRL" when they are really referring to "SkyRL-train",
so to avoid any confusion, I have just added this as a simple page on
the sidebar. We need to make the docs be mono-repo wide and structure it
better but I'm leaving it for a future PR.

---------

Signed-off-by: SumanthRH <[email protected]>

* [trainer/algorithm] Implement DAPO and Polaris style dynamic sampling + add DAPO docs + example (NovaSky-AI#130)

# Overview
This PR introduces filter (DAPO) and replace (Polaris/WebSailor) style
dynamic sampling strategies. The dynamic sampling strategy can be
configured as below:

```yaml
# dynamic sampling parameters
dynamic_sampling:
  type: null # filter (DAPO), replace (POLARIS/WebSailor), or null
  max_sample_batches: 30 # sample at most this many batches before stopping, -1 to sample forever
  min_replace_ratio: 0.3 # minimum proportion of good samples with which to replace bad samples (for replace strategy only)
```
This PR also adds a docs page describing how to enable all DAPO
features, and adds an example GSM8K script where all these features are
used.

## Minor Changes
Some minor changes to make this dynamic sampling implementation clean:
- the utils `Timer` class now updates the dict instead of overwriting in
order to correctly track generation time w/ dynamic sampling, which
means we need to make sure to reset `all_timings` in any trainer
- The use of `self.weights_manager` is a little tricky for the dynamic
sampling - introduced the the `ConditionalWeightsManager` to make the
added code in the training loop as clean as possible


## Example runs
<img width="413" height="264" alt="image"
src="https://github.com/user-attachments/assets/072f716a-3632-42bb-a5f7-5f9d6064bd93"
/>

Generation time for dapo style filtering increases as the training run
goes on, while it is stable for polaris and the baseline.

<img width="419" height="265" alt="image"
src="https://github.com/user-attachments/assets/887df550-e4b9-4623-b578-b4809a9f403f"
/>

We can see that the training pass @ n metric is 1 for both polaris and
dapo style filtering as expected.

<img width="421" height="259" alt="image"
src="https://github.com/user-attachments/assets/bb63af77-1fbb-4d89-9216-b028f1551ea7"
/>

For GSM8k + Qwen 1.5B, the sampling strategy (as well as the full DAPO
run) results in minimal gains - need larger models/harder dataset to
test more fully

DAPO sampling Example Run:
```bash
(skyrl_entrypoint pid=222117) 2025-08-04 23:13:13.439 | INFO     | skyrl_train.trainer:train:245 - Started: 'step'
(skyrl_entrypoint pid=222117) 2025-08-04 23:13:13.737 | INFO     | skyrl_train.weights_manager:__enter__:76 - Started: 'sync_weights_to_inference_engines'
(skyrl_entrypoint pid=222117) 2025-08-04 23:13:16.401 | INFO     | skyrl_train.weights_manager:__enter__:76 - Finished: 'sync_weights_to_inference_engines', time cost: 2.66s
(skyrl_entrypoint pid=222117) 2025-08-04 23:13:16.401 | INFO     | skyrl_train.weights_manager:__enter__:80 - Started: 'offload_policy_model_to_cpu'
(skyrl_entrypoint pid=222117) 2025-08-04 23:13:16.842 | INFO     | skyrl_train.weights_manager:__enter__:80 - Finished: 'offload_policy_model_to_cpu', time cost: 0.44s
(skyrl_entrypoint pid=222117) 2025-08-04 23:13:16.888 | INFO     | skyrl_train.trainer:train:261 - Started: 'generate'
(AsyncVLLMInferenceEngine pid=223856) INFO 08-04 23:13:13 [executor_base.py:227] It took 0.243244 seconds to wake up tags ['weights']. [repeated 4x across cluster]
(AsyncVLLMInferenceEngine pid=223854) INFO 08-04 23:13:16 [executor_base.py:227] It took 0.040547 seconds to wake up tags ['kv_cache'].
(AsyncVLLMInferenceEngine pid=223856) INFO 08-04 23:13:16 [block_pool.py:316] Successfully reset prefix cache [repeated 7x across cluster]
(AsyncVLLMInferenceEngine pid=223855) INFO 08-04 23:13:16 [executor_base.py:227] It took 0.041721 seconds to wake up tags ['kv_cache'].
(skyrl_entrypoint pid=222117) 2025-08-04 23:13:34.378 | INFO     | skyrl_train.trainer:train:261 - Finished: 'generate', time cost: 17.49s
(skyrl_entrypoint pid=222117) 2025-08-04 23:13:34.395 | INFO     | skyrl_train.utils.trainer_utils:handle_filter_sampling:433 - ============= Dynamic sampling filter =============
(skyrl_entrypoint pid=222117) 2025-08-04 23:13:34.395 | INFO     | skyrl_train.utils.trainer_utils:handle_filter_sampling:434 - Dynamic sampling: 460 < 1024 prompts
(skyrl_entrypoint pid=222117) 2025-08-04 23:13:34.395 | INFO     | skyrl_train.utils.trainer_utils:handle_filter_sampling:435 - Resample batch 1, continue sampling...
(skyrl_entrypoint pid=222117) 2025-08-04 23:13:34.395 | INFO     | skyrl_train.utils.trainer_utils:handle_filter_sampling:436 - ==================================================
(skyrl_entrypoint pid=222117) 2025-08-04 23:13:34.395 | INFO     | skyrl_train.trainer:train:245 - Finished: 'step', time cost: 20.96s
(skyrl_entrypoint pid=222117) 2025-08-04 23:13:34.407 | INFO     | skyrl_train.trainer:train:245 - Started: 'step'
(skyrl_entrypoint pid=222117) 2025-08-04 23:13:34.445 | INFO     | skyrl_train.trainer:train:261 - Started: 'generate'
(skyrl_entrypoint pid=222117) 2025-08-04 23:13:52.014 | INFO     | skyrl_train.trainer:train:261 - Finished: 'generate', time cost: 17.57s
(skyrl_entrypoint pid=222117) 2025-08-04 23:13:52.029 | INFO     | skyrl_train.utils.trainer_utils:handle_filter_sampling:433 - ============= Dynamic sampling filter =============
(skyrl_entrypoint pid=222117) 2025-08-04 23:13:52.029 | INFO     | skyrl_train.utils.trainer_utils:handle_filter_sampling:434 - Dynamic sampling: 941 < 1024 prompts
(skyrl_entrypoint pid=222117) 2025-08-04 23:13:52.029 | INFO     | skyrl_train.utils.trainer_utils:handle_filter_sampling:435 - Resample batch 2, continue sampling...
(skyrl_entrypoint pid=222117) 2025-08-04 23:13:52.029 | INFO     | skyrl_train.utils.trainer_utils:handle_filter_sampling:436 - ==================================================
(skyrl_entrypoint pid=222117) 2025-08-04 23:13:52.030 | INFO     | skyrl_train.trainer:train:245 - Finished: 'step', time cost: 17.62s
(skyrl_entrypoint pid=222117) 2025-08-04 23:13:52.033 | INFO     | skyrl_train.trainer:train:245 - Started: 'step'
(skyrl_entrypoint pid=222117) 2025-08-04 23:13:52.074 | INFO     | skyrl_train.trainer:train:261 - Started: 'generate'
(skyrl_entrypoint pid=222117) 2025-08-04 23:14:08.380 | INFO     | skyrl_train.trainer:train:261 - Finished: 'generate', time cost: 16.31s
(skyrl_entrypoint pid=222117) 2025-08-04 23:14:08.396 | INFO     | skyrl_train.utils.trainer_utils:handle_filter_sampling:439 - ============= Dynamic sampling filter =============
(skyrl_entrypoint pid=222117) 2025-08-04 23:14:08.396 | INFO     | skyrl_train.utils.trainer_utils:handle_filter_sampling:440 - Dynamic sampling: collected 1467 >= 1024 prompts
(skyrl_entrypoint pid=222117) 2025-08-04 23:14:08.397 | INFO     | skyrl_train.utils.trainer_utils:handle_filter_sampling:443 - ==================================================
(AsyncVLLMInferenceEngine pid=223856) INFO 08-04 23:13:12 [gpu_worker.py:98] Sleep mode freed 61.88 GiB memory, 4.98 GiB memory is still in use. [repeated 3x across cluster]
(AsyncVLLMInferenceEngine pid=223856) INFO 08-04 23:13:12 [executor_base.py:211] It took 1.264572 seconds to fall asleep. [repeated 3x across cluster]
```

Polaris Style example run:
```bash
(skyrl_entrypoint pid=306764) 2025-08-05 00:30:01.648 | INFO     | skyrl_train.trainer:train:261 - Started: 'generate'
(AsyncVLLMInferenceEngine pid=308521) INFO 08-05 00:29:58 [executor_base.py:227] It took 0.240372 seconds to wake up tags ['weights']. [repeated 4x across cluster]
(AsyncVLLMInferenceEngine pid=308520) INFO 08-05 00:30:01 [executor_base.py:227] It took 0.040980 seconds to wake up tags ['kv_cache'].
(AsyncVLLMInferenceEngine pid=308521) INFO 08-05 00:30:00 [block_pool.py:316] Successfully reset prefix cache [repeated 7x across cluster]
(AsyncVLLMInferenceEngine pid=308518) INFO 08-05 00:30:01 [executor_base.py:227] It took 0.041175 seconds to wake up tags ['kv_cache'].
(skyrl_entrypoint pid=306764) 2025-08-05 00:30:16.663 | INFO     | skyrl_train.trainer:train:261 - Finished: 'generate', time cost: 15.01s
(skyrl_entrypoint pid=306764) 2025-08-05 00:30:16.679 | INFO     | skyrl_train.utils.trainer_utils:handle_replace_sampling:316 - Replace sampling: 629 good UIDs out of 1024 total prompts
(skyrl_entrypoint pid=306764) 2025-08-05 00:30:16.680 | INFO     | skyrl_train.utils.trainer_utils:handle_replace_sampling:320 - ============= Dynamic sampling replace ===========
(skyrl_entrypoint pid=306764) 2025-08-05 00:30:16.680 | INFO     | skyrl_train.utils.trainer_utils:handle_replace_sampling:321 - Number of good prompts: 629
(skyrl_entrypoint pid=306764) 2025-08-05 00:30:16.680 | INFO     | skyrl_train.utils.trainer_utils:handle_replace_sampling:322 - Number of bad prompts: 395
(skyrl_entrypoint pid=306764) 2025-08-05 00:30:16.694 | INFO     | skyrl_train.utils.trainer_utils:handle_replace_sampling:352 - After replacement - Replaced 395 bad prompts
(skyrl_entrypoint pid=306764) 2025-08-05 00:30:16.694 | INFO     | skyrl_train.utils.trainer_utils:handle_replace_sampling:353 - ==================================================
(AsyncVLLMInferenceEngine pid=308520) INFO 08-05 00:29:57 [gpu_worker.py:98] Sleep mode freed 62.14 GiB memory, 6.28 GiB memory is still in use. [repeated 3x across cluster]
(AsyncVLLMInferenceEngine pid=308520) INFO 08-05 00:29:57 [executor_base.py:211] It took 1.331663 seconds to fall asleep.
```

## Full DAPO example run 
From example script
<img width="417" height="262" alt="image"
src="https://github.com/user-attachments/assets/2592a06f-8b8a-4cf1-a29e-321bff819eb0"
/>
<img width="909" height="325" alt="image"
src="https://github.com/user-attachments/assets/50922afd-1424-4183-9329-4f1f340287eb"
/>

---------

Co-authored-by: Sumanth R Hegde <[email protected]>

* [algorithm] Support Dr. GRPO + refactor where policy/critic loss functions are set (NovaSky-AI#133)

# Overview
## Dr GRPO
Adds `loss_reduction`: `seq_mean_token_sum_norm ` option, and
`grpo_norm_by_std` option to support Dr. GRPO

So to run Dr. GRPO, set: 

```yaml
trainer:
 algorithm:
   grpo_norm_by_std: false
   loss_reduction: "seq_mean_token_sum_norm"
...
```

Example run:
<img width="906" height="317" alt="image"
src="https://github.com/user-attachments/assets/ce9db2ef-253e-45c8-adba-1ef8a270bbd9"
/>

Reward looks similar

<img width="419" height="263" alt="image"
src="https://github.com/user-attachments/assets/a4bc4d8c-f3c1-4bad-a497-0297dc30bc27"
/>

Magnitude of policy loss is lower as expected (since we are normalizing
by a larger constant rather than taking the mean)

## Refactor where Critic/Policy Loss are set
Changes ppo critic `ValueLoss` to just a function instead of a
`nn.Module` for consistency with `policy_loss`, and adds new algorithm
field to cfg that require evaluating field values in
`utils::validate_cfg` (this runs before entrypoint code, allowing users
to modify the cfg further by subclassing `BasePPOExp`)

PPO example still running after this refactor:
<img width="421" height="262" alt="image"
src="https://github.com/user-attachments/assets/88985da3-1403-49c6-8cb5-f1434151fd9e"
/>

* [fix] move algorithm folder -> algorithms (NovaSky-AI#136)

left the algorithm folder in NovaSky-AI#133, move it over

* [Logging] Forward mlflow env vars to ray runtime env (NovaSky-AI#135)

This PR forward the `MLFLOW_TRACKING_URI` and `MLFLOW_TRACKING_TOKEN`
environment variable to the ray runtime env during its initialization.

This will enable users to simply provide the above env vars at the driver and be able to use MLFlow for experiment tracking.

* data folder

* some stuff

* updates

---------

Signed-off-by: SumanthRH <[email protected]>
Co-authored-by: Sumanth R Hegde <[email protected]>
Co-authored-by: Eric Tang <[email protected]>
Co-authored-by: Tyler Griggs <[email protected]>
Co-authored-by: Shu Liu <[email protected]>
Co-authored-by: Ben Cohen <[email protected]>
Co-authored-by: Shiyi Cao <[email protected]>
Co-authored-by: Dacheng Li <[email protected]>
Co-authored-by: Etienne Brodu <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

5 participants