Skip to content

🔢 Fix GRPO doc about num_iterations #2966

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Feb 26, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions docs/source/grpo_trainer.md
Original file line number Diff line number Diff line change
Expand Up @@ -91,14 +91,14 @@ $$

where the first term represents the scaled advantage and the second term penalizes deviations from the reference policy through KL divergence.

In the original paper, this formulation is generalized to account for multiple updates after each generation by leveraging the **clipped surrogate objective**:
In the original paper, this formulation is generalized to account for multiple updates after each generation (denoted \\( \mu \\), can be set with `num_iterations` in [`GRPOConfig`]) by leveraging the **clipped surrogate objective**:

$$
\mathcal{L}_{\text{GRPO}}(\theta) = - \frac{1}{G} \sum_{i=1}^G \frac{1}{|o_i|} \sum_{t=1}^{|o_i|} \left[ \min \left( \frac{\pi_\theta(o_{i,t} \mid q, o_{i,< t})}{\pi_{\theta_{\text{old}}}(o_{i,t} \mid q, o_{i,< t})} \hat{A}_{i,t}, \, \text{clip}\left( \frac{\pi_\theta(o_{i,t} \mid q, o_{i,< t})}{\pi_{\theta_{\text{old}}}(o_{i,t} \mid q, o_{i,< t})}, 1 - \epsilon, 1 + \epsilon \right) \hat{A}_{i,t} \right) - \beta \mathbb{D}_{\text{KL}}\left[\pi_\theta \| \pi_{\text{ref}}\right] \right],
$$

where \\(\text{clip}(\cdot, 1 - \epsilon, 1 + \epsilon) \\) ensures that updates do not deviate excessively from the reference policy by bounding the policy ratio between \\( 1 - \epsilon \\) and \\( 1 + \epsilon \\).
In TRL though, as in the original paper, we only do one update per generation, so we can simplify the loss to the first form.
When \\( \mu = 1 \\) (default in TRL), the clipped surrogate objective simplifies to the original objective.

## Logged metrics

Expand Down