Skip to content

Conversation

ProGamerGov
Copy link
Contributor

@ProGamerGov ProGamerGov commented Jun 26, 2024

Fixes: #6900

Not sure if this needs any addition stuff before merging

@HuggingFaceDocBuilderDev

The docs for this PR live here. All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.

Copy link
Member

@lhoestq lhoestq left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Great ! I added a small suggestion to handle the case where the missing field is an image or an audio sample.

Could you also add a small test in test_webdataset.py ?
I believe you can reuse the same code as in test_image_webdataset and simply pass features= to Webdataset() and check if the examples have the extra features as None. Then we'll be good to merge !

Copy link
Member

@lhoestq lhoestq left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Great ! I updated the test :) the rest of the CI failures are unrelated to this PR

@lhoestq lhoestq merged commit 83d2860 into huggingface:main Jun 28, 2024
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005188 / 0.011353 (-0.006165) 0.003812 / 0.011008 (-0.007196) 0.062408 / 0.038508 (0.023900) 0.030734 / 0.023109 (0.007625) 0.236528 / 0.275898 (-0.039370) 0.267684 / 0.323480 (-0.055796) 0.003182 / 0.007986 (-0.004804) 0.004009 / 0.004328 (-0.000319) 0.048966 / 0.004250 (0.044715) 0.045259 / 0.037052 (0.008207) 0.250586 / 0.258489 (-0.007903) 0.287079 / 0.293841 (-0.006762) 0.029235 / 0.128546 (-0.099311) 0.012216 / 0.075646 (-0.063431) 0.203864 / 0.419271 (-0.215408) 0.036324 / 0.043533 (-0.007209) 0.245180 / 0.255139 (-0.009959) 0.270327 / 0.283200 (-0.012872) 0.018676 / 0.141683 (-0.123007) 1.115568 / 1.452155 (-0.336586) 1.183267 / 1.492716 (-0.309449)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.094307 / 0.018006 (0.076301) 0.299071 / 0.000490 (0.298581) 0.000219 / 0.000200 (0.000019) 0.000042 / 0.000054 (-0.000012)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.018336 / 0.037411 (-0.019076) 0.062973 / 0.014526 (0.048447) 0.074137 / 0.176557 (-0.102420) 0.120553 / 0.737135 (-0.616582) 0.075411 / 0.296338 (-0.220927)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.284751 / 0.215209 (0.069542) 2.789294 / 2.077655 (0.711640) 1.457789 / 1.504120 (-0.046331) 1.339140 / 1.541195 (-0.202055) 1.341685 / 1.468490 (-0.126805) 0.714928 / 4.584777 (-3.869849) 2.361197 / 3.745712 (-1.384516) 2.791569 / 5.269862 (-2.478293) 1.892261 / 4.565676 (-2.673416) 0.077954 / 0.424275 (-0.346321) 0.005454 / 0.007607 (-0.002153) 0.350766 / 0.226044 (0.124721) 3.416749 / 2.268929 (1.147820) 1.835377 / 55.444624 (-53.609247) 1.506456 / 6.876477 (-5.370020) 1.642728 / 2.142072 (-0.499344) 0.791543 / 4.805227 (-4.013684) 0.133102 / 6.500664 (-6.367562) 0.042572 / 0.075469 (-0.032897)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.977958 / 1.841788 (-0.863830) 11.438271 / 8.074308 (3.363963) 9.305719 / 10.191392 (-0.885673) 0.141239 / 0.680424 (-0.539185) 0.014330 / 0.534201 (-0.519871) 0.302201 / 0.579283 (-0.277082) 0.261688 / 0.434364 (-0.172676) 0.338752 / 0.540337 (-0.201586) 0.468466 / 1.386936 (-0.918470)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005629 / 0.011353 (-0.005723) 0.003997 / 0.011008 (-0.007011) 0.050447 / 0.038508 (0.011939) 0.031694 / 0.023109 (0.008585) 0.277392 / 0.275898 (0.001494) 0.290440 / 0.323480 (-0.033040) 0.004403 / 0.007986 (-0.003583) 0.002851 / 0.004328 (-0.001478) 0.048593 / 0.004250 (0.044343) 0.040622 / 0.037052 (0.003570) 0.282640 / 0.258489 (0.024151) 0.309390 / 0.293841 (0.015549) 0.031453 / 0.128546 (-0.097094) 0.012424 / 0.075646 (-0.063223) 0.060311 / 0.419271 (-0.358960) 0.033195 / 0.043533 (-0.010338) 0.266867 / 0.255139 (0.011728) 0.281966 / 0.283200 (-0.001234) 0.018026 / 0.141683 (-0.123657) 1.136273 / 1.452155 (-0.315882) 1.141643 / 1.492716 (-0.351073)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.095011 / 0.018006 (0.077005) 0.300571 / 0.000490 (0.300082) 0.000220 / 0.000200 (0.000020) 0.000044 / 0.000054 (-0.000011)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.022903 / 0.037411 (-0.014508) 0.077130 / 0.014526 (0.062604) 0.089576 / 0.176557 (-0.086980) 0.127156 / 0.737135 (-0.609980) 0.090008 / 0.296338 (-0.206331)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.289270 / 0.215209 (0.074061) 2.848239 / 2.077655 (0.770585) 1.546788 / 1.504120 (0.042668) 1.417275 / 1.541195 (-0.123920) 1.456214 / 1.468490 (-0.012276) 0.716688 / 4.584777 (-3.868088) 0.940242 / 3.745712 (-2.805470) 2.911956 / 5.269862 (-2.357906) 1.871358 / 4.565676 (-2.694318) 0.077553 / 0.424275 (-0.346722) 0.005279 / 0.007607 (-0.002328) 0.343338 / 0.226044 (0.117294) 3.368694 / 2.268929 (1.099766) 1.896765 / 55.444624 (-53.547859) 1.612414 / 6.876477 (-5.264063) 1.615934 / 2.142072 (-0.526138) 0.794016 / 4.805227 (-4.011212) 0.131821 / 6.500664 (-6.368843) 0.041495 / 0.075469 (-0.033975)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.003418 / 1.841788 (-0.838370) 12.073906 / 8.074308 (3.999598) 10.166291 / 10.191392 (-0.025101) 0.131224 / 0.680424 (-0.549200) 0.015246 / 0.534201 (-0.518955) 0.299835 / 0.579283 (-0.279448) 0.124308 / 0.434364 (-0.310056) 0.336414 / 0.540337 (-0.203924) 0.429569 / 1.386936 (-0.957367)

@ProGamerGov
Copy link
Contributor Author

@lhoestq Thank you!

albertvillanova pushed a commit that referenced this pull request Aug 13, 2024
…ssing in an example (#7004)

* Fix KeyError bug

* Add additional check

Co-authored-by: Quentin Lhoest <[email protected]>

* Add test for missing key handling

* update test

---------

Co-authored-by: Quentin Lhoest <[email protected]>
Co-authored-by: Quentin Lhoest <[email protected]>
albertvillanova pushed a commit that referenced this pull request Aug 14, 2024
…ssing in an example (#7004)

* Fix KeyError bug

* Add additional check

Co-authored-by: Quentin Lhoest <[email protected]>

* Add test for missing key handling

* update test

---------

Co-authored-by: Quentin Lhoest <[email protected]>
Co-authored-by: Quentin Lhoest <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

[WebDataset] KeyError with user-defined Features when a field is missing in an example
3 participants