Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,10 @@ def setup(self):
num_layers=self.iou_head_depth,
name='iou_prediction_head')

self.transformer = transformer.TwoWayTransformer(name='transformer')
self.transformer = transformer.TwoWayTransformer(
name='transformer',
embedding_dim=self.transformer_dim,
)

def predict_masks(
self, image_embeddings, image_pe,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -32,8 +32,8 @@ class PromptEncoder(nn.Module):
"""Sam prompt encoder for points and boxes."""

embed_dim: int = 256
image_embedding_size: Tuple[int, int] = (1024 // 16, 1024 // 16)
input_image_size: Tuple[int, int] = (1024, 1024)
image_embedding_size: Tuple[int, int] = (1024 // 16, 1024 // 16)
num_point_embeddings: int = 4 # pos/neg point + 2 box corners
mask_in_chans: int = 16

Expand Down Expand Up @@ -114,6 +114,7 @@ def _embed_boxes(self, boxes, image_size=None):
return corner_embedding

def _embed_masks(self, masks):
print(masks.shape)
mask_embedding = self.mask_downscaling(masks)
return mask_embedding

Expand Down Expand Up @@ -156,6 +157,7 @@ def __call__(
sparse_embeddings = jnp.concatenate(
[sparse_embeddings, box_embeddings], axis=1)
if masks is not None:
print(masks.shape)
dense_embeddings = self._embed_masks(masks)
else:
if image_embedding_size is None:
Expand All @@ -165,6 +167,7 @@ def __call__(
(num_prompts, image_embedding_size[0],
image_embedding_size[1], self.embed_dim,)
)

return sparse_embeddings, dense_embeddings


Expand Down