Code for paper Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smaller Model Sizes
- Setup Conda environment:
conda create --name distill python=3.10.6 -y
conda activate distill
conda install -y pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch
pip install git+https://github.com/huggingface/[email protected] datasets sentencepiece protobuf==3.20.* tensorboardX
- Extract datasets to
datasets/:
unzip datasets.zip
--from_pretrained:google/t5-v1_1-small,google/t5-v1_1-base,google/t5-v1_1-large,google/t5-v1_1-xxl--dataset:esnli,anli1,cqa,svamp--label_type:--label_type gt: Use GT label for training--label_type llm: Use LLM predicted label for training
--alpha: Task weight for multi-task training. Loss = alpha * label_prediction_loss + (1 - alpha) * rationale_generation_loss--alpha 0.5: recommended
--batch_size: Batch size--grad_steps: Gradient accumulation step--max_input_length: Maximum input length--eval_steps: How many steps to evaluate the model during training--max_steps: Maximum steps for training--run: Random seed to use--model_type:standard: Standard finetuning (--label_type gt) or distillation (--label_type llm)task_prefix: Distilling step-by-step
--parallelize: Model parallelism
- Standard finetuning:
python run.py --from_pretrained google/t5-v1_1-base --dataset cqa --model_type standard --label_type gt --batch_size 64- Distilling step-by-step with
GT labelandPaLM rationale:
python run.py --from_pretrained google/t5-v1_1-base --dataset cqa --model_type task_prefix --label_type gt --llm palm --alpha 0.5 --batch_size 64- Standard distillation:
python run.py --from_pretrained google/t5-v1_1-base --dataset cqa --model_type standard --label_type llm --batch_size 64- Distilling step-by-step with
PaLM labelandPaLM rationale:
python run.py --from_pretrained google/t5-v1_1-base --dataset cqa --model_type task_prefix --label_type llm --llm palm --alpha 0.5 --batch_size 64If you find this repository useful, please consider citing:
@article{hsieh2023distilling,
title={Distilling step-by-step! outperforming larger language models with less training data and smaller model sizes},
author={Hsieh, Cheng-Yu and Li, Chun-Liang and Yeh, Chih-Kuan and Nakhost, Hootan and Fujii, Yasuhisa and Ratner, Alexander and Krishna, Ranjay and Lee, Chen-Yu and Pfister, Tomas},
journal={arXiv preprint arXiv:2305.02301},
year={2023}
}