Skip to content
Open
Show file tree
Hide file tree
Changes from 28 commits
Commits
Show all changes
36 commits
Select commit Hold shift + click to select a range
01b2f0e
add yolo prediction tutorial based on deepsea dataset.
mjoudy Jul 16, 2025
37d1a8b
Gemfile?!
mjoudy Jul 16, 2025
c40eabb
Merge remote-tracking branch 'upstream/main' into yolo_predict_tutori…
mjoudy Jul 16, 2025
868b9dc
Update topics/imaging/tutorials/yolo_prediction/tutorial.md
yvanlebras Jul 18, 2025
a95ce4d
Update topics/imaging/tutorials/yolo_prediction/tutorial.md
yvanlebras Jul 18, 2025
3547180
Update topics/imaging/tutorials/yolo_prediction/tutorial.md
yvanlebras Jul 18, 2025
498fe12
Update topics/imaging/tutorials/yolo_prediction/tutorial.md
yvanlebras Jul 18, 2025
c9083d0
Update topics/imaging/tutorials/yolo_prediction/tutorial.md
yvanlebras Jul 18, 2025
95c963b
Update topics/imaging/tutorials/yolo_prediction/tutorial.md
yvanlebras Jul 18, 2025
52c1afa
Update tutorial.md with GTN compliant elements (I hope ;) )
yvanlebras Jul 18, 2025
f31775f
Update topics/imaging/tutorials/yolo_prediction/tutorial.md
yvanlebras Jul 18, 2025
1b574c7
Update topics/imaging/tutorials/yolo_prediction/tutorial.md
yvanlebras Jul 18, 2025
29cd75c
Update tutorial.md to homogeneize parameters presentation
yvanlebras Jul 18, 2025
82bd6f6
fix some typo and add a step to create class name file
yvanlebras Jul 18, 2025
7654df9
fix typo and add SEANOE dataset reference
yvanlebras Jul 22, 2025
1598632
Gemfile checkout
mjoudy Jul 23, 2025
498bdc9
comments resolved. GTN build testing error fixed.
mjoudy Jul 24, 2025
c492ec3
references added.
mjoudy Jul 25, 2025
ac664b7
Merge branch 'main' into yolo_predict_tutorial_deepsea
anuprulez Jul 29, 2025
f236611
comments resolved. except parts for history search and segmntation.
mjoudy Jul 29, 2025
b175b99
Apply suggestions from code review
mjoudy Jul 29, 2025
7e9fc1b
note for ? char added.
mjoudy Jul 29, 2025
a2b025e
Merge branch 'yolo_predict_tutorial_deepsea' of https://github.com/mj…
mjoudy Jul 29, 2025
589d0eb
Merge branch 'main' into yolo_predict_tutorial_deepsea
anuprulez Jul 30, 2025
3b22986
Update topics/imaging/tutorials/yolo_prediction/tutorial.md
mjoudy Jul 31, 2025
931ca71
Update topics/imaging/tutorials/yolo_prediction/tutorial.md
mjoudy Jul 31, 2025
bc8252d
Merge branch 'main' into yolo_predict_tutorial_deepsea
bgruening Aug 11, 2025
b0f73b0
Update tutorial.md
bgruening Aug 11, 2025
6d0ef7a
Apply suggestion from @kostrykin
kostrykin Aug 11, 2025
3badbb6
Update topics/imaging/tutorials/yolo_prediction/tutorial.md
kostrykin Aug 11, 2025
d7efb00
Update topics/imaging/tutorials/yolo_prediction/tutorial.md
kostrykin Aug 11, 2025
b2b838e
Update topics/imaging/tutorials/yolo_prediction/tutorial.md
kostrykin Aug 11, 2025
de8b832
Update topics/imaging/tutorials/yolo_prediction/tutorial.md
kostrykin Aug 11, 2025
0ad22ca
Update topics/imaging/tutorials/yolo_prediction/tutorial.md
kostrykin Aug 14, 2025
596b41b
Apply suggestions from code review
kostrykin Aug 14, 2025
8b8d8d0
Update topics/imaging/tutorials/yolo_prediction/tutorial.md
mjoudy Aug 24, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added topics/imaging/images/yolo/CAM-TEMPO.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added topics/imaging/images/yolo/CAM-TEMPO2.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added topics/imaging/images/yolo/CAM-TEMPO3.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added topics/imaging/images/yolo/MOMAR.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added topics/imaging/images/yolo/buccinid.jpeg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added topics/imaging/images/yolo/bus.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added topics/imaging/images/yolo/bus_mask.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added topics/imaging/images/yolo/bythog2.jpeg
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

What are the ? in the image? Are these on purpose?

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

They are generated by the model or yolo-prediction tool.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

But what do they mean? In case these are some artifacts, it's worth mentioning this in the text, so the reader isn't confused.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It looks likecharacter "é" in Crabe bythograeidé is not getting properly displayed

Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
8 changes: 8 additions & 0 deletions topics/imaging/tutorials/yolo_prediction/tutorial.bib
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
@online{lebeaud2024deepsea,
author = {Lebeaud, Antoine and Tosello, Vanessa and Borremans, Catherine and Matabos, Marjolaine},
title = {Deep-sea observatories images labeled by citizen for object detection algorithms},
year = {2024},
publisher = {SEANOE},
doi = {10.17882/101899},
url = {https://www.seanoe.org/data/00907/101899}
}
286 changes: 286 additions & 0 deletions topics/imaging/tutorials/yolo_prediction/tutorial.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,286 @@
---
layout: tutorial_hands_on
title: Object detection and segmentation with YOLO

zenodo_link: ''

questions:
- How do object detection and segmentation differ in practice?
- How can I run YOLO models on marine images to detect species using Galaxy?
- Why does the choice of model type matter?

objectives:
- Detect marine species in underwater images using a pretrained YOLOv8 model
- Compare results between detection and segmentation modes
- Understand the requirements and output types of each model

time_estimation: "45m"

tags:
- object-detection
- image-segmentation
- deep-learning
- ecology

bibtex: tutorial.bib

priority: 5

contributions:
authorship:
- mjoudy
- yvanlebras

follow_up_training:
- type: "internal"
topic_name: machine-learning
tutorials:
- ml-advanced-image

---

YOLO (You Only Look Once) is a fast, deep learning-based algorithm for real-time object detection. It predicts object classes and bounding boxes in a single pass over the image. YOLOv8 is a specific version, offering improved accuracy and speed.

In this tutorial, you will use Galaxy to run two types of YOLOv8 models:

1. **Object Detection** using real underwater images from the SEANOE dataset.
2. **Segmentation** using an Ultralytics demo model on a standard image.

We'll compare both modes and discuss what kind of output they generate and why it matters in bioimage analysis.

---

# Part 1: Detection of marine species

## 🔗 Dataset

👉 We will use selected images from the SEANOE dataset {% cite lebeaud2024deepsea %}.

The [SEANOE](https://www.seanoe.org/data/00907/101899) collection features real underwater images captured by deep‑sea observatories as part of a citizen science initiative called Deep Sea Spy. These non‑destructive imaging stations continuously monitor marine ecosystems and provide snapshots of various fauna. In this dataset, multiple annotators—including trained scientists and enthusiastic citizen scientists—have manually labeled images with polygons, lines, or points highlighting marine organisms. These annotations were then cleaned and converted into bounding boxes to create a training-ready dataset for object detection with YOLOv8. Though the exact species vary, images often include deep-sea fish, species, making this dataset well-suited for practicing detection tasks.

<img src="../../images/yolo/CAM-TEMPO.jpg" style="width:40%; display:inline-block;" alt="sample buccinid data">
<img src="../../images/yolo/MOMAR.jpg" style="width:40%; display:inline-block;" alt="sample bythongraede data">
<img src="../../images/yolo/CAM-TEMPO2.jpg" style="width:40%; display:inline-block;" alt="sample buccinid2 data">
<img src="../../images/yolo/CAM-TEMPO3.jpg" style="width:40%; display:inline-block;" alt="sample buccinid3 data">

## Get data

> <hands-on-title> Data Upload </hands-on-title>
>
> 1. Create a new history for this tutorial and give it a name (example: “DeepSeaSpy Yolo tutorial”) for you to find it again later if needed.
>
> {% snippet faqs/galaxy/histories_create_new.md %}
>
> {% snippet faqs/galaxy/histories_rename.md %}
>
> 2. Import image data files and models from [SEANOE marine datawarehouse](https://www.seanoe.org/data/00907/101899/).
>
> DeepSeaSpy image data files and models as a zip file:
> ```
> https://www.seanoe.org/data/00907/101899/data/115473.zip
> ```
>
> {% snippet faqs/galaxy/datasets_import_via_link.md %}
>
> 3. Use {% tool [Unzip](toolshed.g2.bx.psu.edu/repos/imgteam/unzip/unzip/6.0+galaxy0) %} to create a data collection in your history where all archive files will be unzipped.
>
> 4. Unhide the models data files.
>
> History search `name:detection deleted:false visible:any` then unhidde the 2 model files "dataset_seanoe_101899_YOLOv8-weights-for-Bythograeidae-detection" and "dataset_seanoe_101899_YOLOv8-weights-for-Buccinidae-detection".
Copy link
Collaborator

@kostrykin kostrykin Jul 25, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The file names are quite long, it might be worth putting them in separate lines. Also, I might be missing something, but I never heard the term "History search", do you maybe mean "Search the history"?

Suggested change
> History search `name:detection deleted:false visible:any` then unhidde the 2 model files "dataset_seanoe_101899_YOLOv8-weights-for-Bythograeidae-detection" and "dataset_seanoe_101899_YOLOv8-weights-for-Buccinidae-detection".
> Search the history for `name:detection deleted:false visible:any`, then unhide the 2 model files
> - "dataset_seanoe_101899_YOLOv8-weights-for-Bythograeidae-detection" and
> - "dataset_seanoe_101899_YOLOv8-weights-for-Buccinidae-detection".

>
>
> {% snippet faqs/galaxy/datasets_unhidden.md %}
>
> {% snippet faqs/galaxy/datasets_change_datatype.md datatype="tabular" %}
>
> 5. Select a sample of 100 image files and create a dedicated data collection
>
> History search `extension:jpg deleted:false visible:any` then click on "select all" and "autobuild list", select 100 files and give a name of the data collection, "DeepSeaSpy 100 images sample" for example. Tips: To select only last 100 files, you can use the history search function and specify `extension:jpg deleted:false hid>XXXX visible:any` in the search bar where XXXX is the id of the last image dataset minus 100 (for example `extension:jpg deleted:false hid>3886 visible:any` if you have images until the history dataset ID 3986.
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

See my comment on line 91:

Suggested change
> History search `extension:jpg deleted:false visible:any` then click on "select all" and "autobuild list", select 100 files and give a name of the data collection, "DeepSeaSpy 100 images sample" for example. Tips: To select only last 100 files, you can use the history search function and specify `extension:jpg deleted:false hid>XXXX visible:any` in the search bar where XXXX is the id of the last image dataset minus 100 (for example `extension:jpg deleted:false hid>3886 visible:any` if you have images until the history dataset ID 3986.
> Search the history for `extension:jpg deleted:false visible:any`, then click on "select all" and "autobuild list", select 100 files and give a name of the data collection, "DeepSeaSpy 100 images sample" for example. Tips: To select only last 100 files, you can use the history search function and specify `extension:jpg deleted:false hid>XXXX visible:any` in the search bar, where `XXXX` is the ID of the last image dataset minus 100 (for example `extension:jpg deleted:false hid>3886 visible:any` if you have images up to the history dataset ID 3986).

>
> 6. Create class name file "Buccinide", copying and pasting this content in the file uploader:
>
> ```
> Autre poisson
> Couverture de moules
> Couverture microbienne
> Couverture vers tubicole
> Crabe araignée
> Crabe bythograeidé
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Wouldn't it make sense to rather use

Suggested change
> Crabe bythograeidé
> Crabe bythograeide

so that the reader won't be suggested to use some characters that are not supported by the tool? (see this)

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I took these class names from the pre-trained model (.pt file) available in the dataset. I think if they are going to use this model, they have to provide these names.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can you maybe give it a shot and see whether it works? My gut feeling is that it does…

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think I had tested. but will do it again.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@mjoudy Any updates on this yet?

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I wanted to try it myself, but I can't find the image used as input to obtain topics/imaging/images/yolo/bythog2.jpeg. Can you @mjoudy maybe please point me to the right file?

> Crevette alvinocarididae
> Escargot buccinidé
> Ophiure
> Poisson Cataetyx
> Poisson chimère
> Poisson zoarcidé
> Pycnogonide
> Ver polynoidé
> Vers polynoidés
> ```
{: .hands_on}

## 📦 Model

This dataset provides two pretrained YOLOv8 detection models tailored for the marine species found in [SEANOE](https://www.seanoe.org/data/00907/101899). One model detects Buccinidae (a family of sea snails), and the other targets Bythograeidae (a family of deep-sea crabs). These models were trained on cleaned annotation sets that contain thousands of examples—for instance, the Buccinidae set includes over 14,900 annotations in total. For this tutorial, you’ll find two model files—`*.pt` files—each accompanied by the appropriate class_names.txt file. You can upload either or both to Galaxy to run detection experiments on your underwater images.

## ⚙️ Run YOLOv8 in detect mode


> <hands-on-title> Detect Buccinid snails on images </hands-on-title>
>
> 1. {% tool [Perform YOLO image labeling](toolshed.g2.bx.psu.edu/repos/bgruening/yolo_predict/yolo_predict/8.3.0+galaxy2) %} with the following parameters:
> - {% icon param-file %} *"Input images"*: `DeepSeaSpy 100 images sample` (Input images dataset collection)
> - {% icon param-file %} *"Class names file"*: `Buccinide` (Input plain text file (.txt) that lists the names of the classes the model can detect)
> - *"Model"*: `dataset_seanoe_101899_YOLOv8-weights-for-Buccinidae-detection` (Input pt file)
> - *"Prediction mode"*: `Detect`
> - *"Image size"*: `1000`
> - *"Confidence"*: `0.25`
> - *"IoU"*: `0.45`
> - *"Max detections"*: `300`
>
> > <warning-title> Models type </warning-title>
> >
> > The model is trained only for detection, not segmentation.
> >
> {: .warning}
>
> > <tip-title>IoU threshold parameter</tip-title>
> >
> > Try changing the confidence and IoU thresholds to see how detection results vary. It helps you find a good balance between sensitivity and accuracy.
> >
> >
> {: .tip}
>
> > <comment-title>Additional information on class names file and parameters</comment-title>
> >
> > Concerning the class names file: Each class name must be on its own line, in the same order used during model training. So the class ID 0 corresponds to Buccinidae, and 1 to Bythograeidae.
> > Concerning tool parameters:
> > - *"Image size"*: Use 1000 (or a smaller number like 640 if processing speed is important). This controls how much the image is resized before prediction. Smaller values = faster but possibly less accurate.
> > - *"Confidence"*: Set to 0.25 (25%). This controls how confident the model must be to report a detection. If you increase this value (e.g., 0.5), you’ll get fewer detections, but they’ll be more confident. If you lower it (e.g., 0.1), you may get more results, but possibly more false positives.
> > - *"IoU"*: Set to 0.45. This is used for Non-Maximum Suppression (NMS), which removes overlapping detections. A higher IoU value (e.g., 0.7) keeps more overlapping boxes. A lower IoU (e.g., 0.3) removes more overlaps, which may help clean up crowded images.
> > - *"Max detections"*: Set a reasonable cap like 300. This limits the number of objects detected per image.
> >
> {: .comment}
>
{: .hands_on}

## 🧾 Explore the Outputs

After running the tool, Galaxy will give you several output files for each image. Let’s go through what each one means and how to use them:

📄 **Text files (*.txt):**

These are plain text files containing the detection results. Each line in a file shows:

```
<class_id> <confidence_score> <x_center> <y_center> <width> <height>
```

For example: ```0 0.82 350 200 100 120```
which means:

- Class ID 0 (in our case, Buccinidae)

- Detected with 82% confidence

- The bounding box is centered at (350, 200) and has a width of 100 and height of 120 (in pixels, relative to the image. You can use this file to do further analysis, like counting species or tracking locations over time.

🖼️ **Overlay images (*.jpg):**

These are your original images with colored boxes drawn around detected species. Each box also includes:
The class name and the confidence score. For example, you might see a box labeled:
`Crabe bythograeid 0.54`

![buccinid](../../images/yolo/buccinid.jpeg)
![bythog](../../images/yolo/bythog2.jpeg)


These images are useful for visually checking whether detections are correct or if something was missed.

⚠️ The `?` character you see in the annotation is due to an incompatibility between the class names in the pre-trained model and the character encoding used on the system where the model was originally trained. This typically happens when non-UTF-8 characters are not properly handled during training or export.

⚠️ **No masks or segmentation files:** Since we used detect mode, this tool will not generate segmentation masks (like .tiff or polygon files). Those are only available in segment mode, which we'll cover next.



## 💬 What to Look For

- Are species detected correctly?
- Any false positives or missed detections?
- What confidence levels do you observe?
- How many objects per image?

---

# 🧩 Part 2: Segmentation with an Ultralytics example

Since the marine models only support detection, we’ll now demonstrate segmentation using a pretrained YOLOv8 model from Ultralytics.

### 📦 Model & Input Image

The YOLOv8n-seg model is a lightweight instance segmentation model trained on the COCO dataset (Common Objects in Context), which contains 80 everyday object classes such as person, bus, bicycle, car, dog, and more. These categories cover common scenes, making the model suitable for general-purpose detection and segmentation tasks. It’s ideal for quick testing, tutorials, or deployment on resource-limited systems.

The proper class names file for this segmentation model is:
```
person
bus
bicycle
car
...
```


### 🧾 Explore the Segmentation Outputs
YOLOv8 in segment mode produces a more detailed output than detection:

🖼️ **Segmented overlay (*.jpg):**
This image shows both bounding boxes and colored masks indicating the exact shape of each object.

<img src="../../images/yolo/bus.jpg" style="width:40%;" alt="Input image of a bus used in segmentation example">


🗺️ **Mask file (*_mask.tiff):**
A grayscale image where each object appears as a white/black blob against a black background. Ideal for pixel-level analysis or downstream processing.


<img src="../../images/yolo/bus_mask.png" style="width:40%;" alt="YOLOv8 predicted mask on the bus image">

📄 **Annotation file (*.txt):**
This output contains class IDs, bounding box coordinates, confidence scores, and detailed segmentation polygons—providing both the approximate location and the precise shape of each object in plain text format.



---

### 🔍 Compare Detection vs Segmentation

| Feature | Detection | Segmentation |
|------------------|--------------------------|----------------------------------|
| Mode | `detect` | `segment` |
| Output overlays | Bounding boxes only | Boxes + masks |
| .tiff masks | ❌ | ✅ |
| Use case | Objects presence/count | Object shape, size, morphology |
| Performance | Faster | Slightly slower, more detailed |


---

### 💡 Final Notes

Galaxy simplifies running YOLO models in a user-friendly, reproducible way.

- Choose your **prediction mode** according to your model and task
- Always check that the **model type matches the mode** (`detect` vs `segment`)
- Use overlays and annotation files for further analysis or visualization

---

### ✅ Next Steps

Want to go further?

- Train your own model on SEANOE annotations using [YOLO training tool in Galaxy](https://usegalaxy.eu/root?tool_id=toolshed.g2.bx.psu.edu/repos/bgruening/yolo_training/yolo_training/8.3.0+galaxy2)
- Get more information from [YOLOv8 training notebook](https://docs.ultralytics.com)

---


Loading