Skip to content
This repository was archived by the owner on May 1, 2024. It is now read-only.
This repository was archived by the owner on May 1, 2024. It is now read-only.

RuntimeError on Windows #9

@Vulwsztyn

Description

@Vulwsztyn

Stack trace:

python open_lth.py lottery --default_hparams=cifar_resnet_20 --levels=3
==================================================================================
Lottery Ticket Experiment (Replicate 1)
----------------------------------------------------------------------------------
Dataset Hyperparameters
    * dataset_name => cifar10
    * batch_size => 128
Model Hyperparameters
    * model_name => cifar_resnet_20
    * model_init => kaiming_normal
    * batchnorm_init => uniform
Training Hyperparameters
    * optimizer_name => sgd
    * lr => 0.1
    * training_steps => 160ep
    * momentum => 0.9
    * milestone_steps => 80ep,120ep
    * gamma => 0.1
    * weight_decay => 0.0001
Pruning Hyperparameters
    * pruning_strategy => sparse_global
    * pruning_fraction => 0.2
Output Location: C:\Users\Artur\open_lth_data\lottery_93bc65d66dfa64ffaf2a0ab105433a2c\replicate_1\level_0\main
==================================================================================

----------------------------------------------------------------------------------
Pruning Level 0
----------------------------------------------------------------------------------
Traceback (most recent call last):
  File "open_lth.py", line 62, in <module>
    main()
  File "open_lth.py", line 58, in main
    platform.run_job(runner_registry.get(runner_name).create_from_args(args).run)
  File "C:\Users\Artur\Projects\open_lth\platforms\base.py", line 118, in run_job
    f()
  File "C:\Users\Artur\Projects\open_lth\lottery\runner.py", line 75, in run
    self._train_level(level)
  File "C:\Users\Artur\Projects\open_lth\lottery\runner.py", line 118, in _train_level
    train.standard_train(pruned_model, location, self.desc.dataset_hparams, self.desc.training_hparams,
  File "C:\Users\Artur\Projects\open_lth\training\train.py", line 156, in standard_train
    train(training_hparams, model, train_loader, output_location, callbacks, start_step=start_step)
  File "C:\Users\Artur\Projects\open_lth\training\train.py", line 107, in train
    for callback in callbacks: callback(output_location, step, model, optimizer, logger)
  File "C:\Users\Artur\Projects\open_lth\training\standard_callbacks.py", line 97, in modified_callback
    callback(output_location, step, model, optimizer, logger)
  File "C:\Users\Artur\Projects\open_lth\training\standard_callbacks.py", line 62, in eval_callback
    total_loss += model.loss_criterion(output, labels) * labels_size
  File "C:\Users\Artur\AppData\Local\Programs\Python\Python38\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl
    result = self.forward(*input, **kwargs)
  File "C:\Users\Artur\AppData\Local\Programs\Python\Python38\lib\site-packages\torch\nn\modules\loss.py", line 961, in forward
    return F.cross_entropy(input, target, weight=self.weight,
  File "C:\Users\Artur\AppData\Local\Programs\Python\Python38\lib\site-packages\torch\nn\functional.py", line 2468, in cross_entropy
    return nll_loss(log_softmax(input, 1), target, weight, None, ignore_index, None, reduction)
  File "C:\Users\Artur\AppData\Local\Programs\Python\Python38\lib\site-packages\torch\nn\functional.py", line 2264, in nll_loss
    ret = torch._C._nn.nll_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index)
RuntimeError: Expected object of scalar type Long but got scalar type Int for argument #2 'target' in call to _thnn_nll_loss_forward

My python version is 3.8.7

My libraries (pip3 freeze):

absl-py==0.11.0
apex @ file:///C:/<local_path> 
argon2-cffi==20.1.0
astunparse==1.6.3
async-generator==1.10
atomicwrites==1.4.0
attrs==20.3.0
backcall==0.2.0
bleach==3.2.1
blis==0.7.4
cachetools==4.2.0
catalogue==2.0.4
certifi==2020.12.5
cffi==1.14.4
chardet==4.0.0
click==7.1.2
cloudpickle==1.6.0
clr==1.0.3
colorama==0.4.4
cupy-cuda102==8.6.0
cycler==0.10.0
cymem==2.0.5
Cython==0.29.14
decorator==4.4.2
deepdiff==5.0.2
defusedxml==0.6.0
emoji==1.2.0
en-core-web-sm @ https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.0.0/en_core_web_sm-3.0.0-py3-none-any.whl
entrypoints==0.3
enum34==1.1.10
fastrlock==0.6
flatbuffers==1.12
funcy==1.15
future==0.18.2
gast==0.3.3
gensim==3.8.3
google-api-core==1.24.1
google-api-python-client==1.12.8
google-auth==1.24.0
google-auth-httplib2==0.0.4
google-auth-oauthlib==0.4.2
google-pasta==0.2.0
googleapis-common-protos==1.52.0
grpcio==1.32.0
h5py==2.10.0
httplib2==0.18.1
idna==2.10
imageio==2.9.0
iniconfig==1.1.1
ipykernel==5.4.3
ipython==7.19.0
ipython-genutils==0.2.0
ipywidgets==7.6.3
jedi==0.18.0
Jinja2==2.11.2
joblib==1.0.0
jsonschema==3.2.0
jupyter==1.0.0
jupyter-client==6.1.11
jupyter-console==6.2.0
jupyter-core==4.7.0
jupyterlab-pygments==0.1.2
jupyterlab-widgets==1.0.0
Keras-Preprocessing==1.1.2
kiwisolver==1.3.1
lime==0.2.0.1
livereload==2.6.3
llvmlite==0.36.0
lunr==0.5.8
lxml==4.6.3
Markdown==3.3.3
MarkupSafe==1.1.1
matplotlib==3.3.3
mistune==0.8.4
mkdocs==1.1.2
mock==4.0.3
mpyq==0.2.5
multitasking==0.0.9
murmurhash==1.0.5
nbclient==0.5.1
nbconvert==6.0.7
nbformat==5.0.8
nest-asyncio==1.4.3
networkx==2.5.1
nltk==3.5
notebook==6.2.0
numba==0.53.1
numexpr==2.7.2
numpy==1.19.0
oauthlib==3.1.0
opencv-python==4.5.1.48
opt-einsum==3.3.0
ordered-set==4.0.2
packaging==20.8
pandas==1.2.0
pandocfilters==1.4.3
parso==0.8.1
pathy==0.5.2
pickleshare==0.7.5
Pillow==8.1.0
pluggy==0.13.1
portpicker==1.3.1
praw==7.2.0
prawcore==2.0.0
preshed==3.0.5
prometheus-client==0.9.0
prompt-toolkit==3.0.10
protobuf==3.14.0
prunhild @ git+https://github.com/gfrogat/prunhild@55769c6f2eca2748288c24826dd3bb14deaf5707
psaw==0.1.0
py==1.10.0
pyasn1==0.4.8
pyasn1-modules==0.2.8
pycparser==2.20
pydantic==1.7.3
pygame==2.0.0
Pygments==2.7.4
pyLDAvis @ git+https://github.com/bmabey/pyLDAvis.git@15cac9d39400d13f0070910151b0f22b2603e539
pyparsing==2.4.7
pyrsistent==0.17.3
PySC2==3.0.0
pytesseract==0.3.7
pytest==6.2.1
python-dateutil==2.8.1
python-dotenv==0.15.0
pytz==2020.5
PyWavelets==1.1.1
pywin32==300
pywinpty==0.5.7
PyYAML==5.4.1
pyzmq==20.0.0
qtconsole==5.0.1
QtPy==1.9.0
regex==2020.11.13
requests==2.25.1
requests-oauthlib==1.3.0
rsa==4.6
s2clientprotocol==5.0.5.82893.0
s2protocol==5.0.5.82893.0
scikit-image==0.18.1
scikit-learn==0.24.0
scipy==1.5.4
seaborn==0.11.1
Send2Trash==1.5.0
shap==0.39.0
six==1.15.0
sk-video==1.1.10
sklearn==0.0
slicer==0.0.7
smart-open==3.0.0
spacy==3.0.6
spacy-legacy==3.0.5
srsly==2.4.1
tensorboard==2.4.0
tensorboard-plugin-wit==1.7.0
tensorboardX==2.1
tensorflow==2.4.0
tensorflow-estimator==2.4.0
tensorflow-gpu==2.4.0
termcolor==1.1.0
terminado==0.9.2
testpath==0.4.4
thinc==8.0.3
threadpoolctl==2.1.0
tifffile==2021.4.8
toml==0.10.2
torch==1.7.1+cu110
torchaudio==0.7.2
torchvision==0.8.2+cu110
tornado==6.1
tqdm==4.56.0
traitlets==5.0.5
typer==0.3.2
typing-extensions==3.7.4.3
update-checker==0.18.0
uritemplate==3.0.1
urllib3==1.26.2
wasabi==0.8.2
wcwidth==0.2.5
webencodings==0.5.1
websocket-client==0.57.0
Werkzeug==1.0.1
whichcraft==0.6.1
widgetsnbextension==3.5.1
wrapt==1.12.1
yfinance==0.1.59

I'm not sure if there is any more info I should add.

I think adding either requirements.txt, conda environment file, or ideally a Dockerfile would make this repo much more easily runnable.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions